G Protein-Coupled Receptors in Drug Discovery pp 51-66

Part of the Methods in Molecular Biology book series (MIMB, volume 552)

| Cite as

An Overview on GPCRs and Drug Discovery: Structure-Based Drug Design and Structural Biology on GPCRs

  • Kenneth Lundstrom

Summary

G protein-coupled receptors (GPCRs) represent 50–60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the β2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.

Key words

GPCRs Drug discovery Overexpression Functional receptor X-ray crystallography Structure-based drug design 

References

  1. 1.
    Blundel, T.L. (1996) Structure-based drug design. Nature 384S, 23–26.Google Scholar
  2. 2.
    Stoll, V., Qin, W., Stewart, K.D., Jakob, C., Park, C., Walter, K., Simmer, R.L., Helfrich, R., Bussiere, D., Kao, J., Kempf, D., Sham, H.L., and Norbeck, D.W. (2002) X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. Bioorg. Med. Chem. 10, 2803–2806.PubMedCrossRefGoogle Scholar
  3. 3.
    Varghese, J.N. (1999) Development of neuraminidase inhibitors as anti-influenza virus drugs. Drug Dev. Res. 46, 176–196.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Civelli, O., Nothacker, H.P., Saito, Y., Wang, Z., Lin, S.H., and Reinsheid, R.K. (2001) Novel neurotransmitters as natural ligands of orphan G protein-coupled receptors. Trends Neurosci. 24, 230–237.PubMedCrossRefGoogle Scholar
  6. 6.
    Cao, W., Luttrell, L.M., Medvedev, A.V., Pierce, K.L., Daniel, K.W., Dixon, T.M., Lefkowitz, R.J., and Collins, S. (2000) Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275, 38131–38134.PubMedCrossRefGoogle Scholar
  7. 7.
    Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., Caron, M.G., and Lefkowitz, R.J. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661.PubMedCrossRefGoogle Scholar
  8. 8.
    Imamura, T., Huang, J., Dalle, S., Ugi, S., Usui, I., Luttrell, L.M., Miller, W.E., Lefkowitz, R.J., and Olefsky, J.M. (2001) Beta-arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem. 276, 43663–43667.PubMedCrossRefGoogle Scholar
  9. 9.
    Marrero, M.B., Schieffer, B., Paxton, W.G., Heerdt, L., Berk, B.C., Delafontaine, P., and Bernstein, K.E. (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250.PubMedCrossRefGoogle Scholar
  10. 10.
    Vanti, W.B., Swaminathan, S., Blevins, R., Bonini, J.A., O’Dowd, B.F., and George, S.R. (2001) Patent status of the therapeutically important G protein-coupled receptors. Endocr. Rev. 21, 90–113.Google Scholar
  11. 11.
    Esbenshade, T.A. (2006) G protein-coupled receptors as targets for drug discovery. In G Protein-Coupled Receptors in Drug Discovery. Lundstrom, K. and Chiu, M. (eds.), CRC Press, Boca Raton, FL, USA, pp. 15–36.Google Scholar
  12. 12.
    Lundstrom, K. (2006) Latest development in drug discovery on G protein-coupled receptors. Curr. Prot. Pept. Sci. 7, 465–470.CrossRefGoogle Scholar
  13. 13.
    Seifert, R., and Wenzel-Seifert, K. (2002) Constitutive activity of G protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366, 381–416.PubMedCrossRefGoogle Scholar
  14. 14.
    Hodgson, J. (1992) Receptor screening and the search for new pharmaceuticals. Biotechnology 10, 973–980.PubMedCrossRefGoogle Scholar
  15. 15.
    Miraglia, S., Swartzman, E.E., Mellentin-Michelotti, J., Evangelista, L., Smith, C., Gunawan, I.I., Lohman, K., Goldberg, E.M., Manian, B., and Yuan, P.M. (1999) Homogeneous cell- and bead-based assays for high throughput screening using fluorometric microvolume assay technology. J. Biomol. Screen. 4, 193–204.PubMedCrossRefGoogle Scholar
  16. 16.
    Jimonet, P., and Jager, R. (2004) Strategies for designing GPCR-focused libraries and screening sets. Curr. Opin. Drug Discov. Develop. 7, 325–333.Google Scholar
  17. 17.
    Warrior, U., Gopalakrishan, S., Vanhauwe, J., and Burns, D. (2006) High throughput screening assays for G protein-coupled receptors. In G Protein-Coupled Receptors in Drug Discovery. Lundstrom, K. and Chiu, M. (eds.), CRC Press, Boca Raton, FL, USA, pp. 158–189.Google Scholar
  18. 18.
    Kunapuli, P., Ransom, R., Murphy, K.L., Pettibone, D., Kerby, J., Grimwood, S., Zuck, P., Hodder, P., Lacson, R., Hoffman, I., Inglese, J., and Strulovici, B. (2003) Development of an intact cell reporter gene beta-lactamase assay for G protein-coupled receptors for high-throughput screening. Anal. Biochem. 314, 16–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, G., Way, J., Armour, S., Watson, C., Queen, K., Jayawickreme, C.K., Chen, W.J., and Kenakin, T. (2000) Use of constitutive G protein-coupled receptor activity for drug discovery. Mol. Pharmacol. 57, 125–134.PubMedGoogle Scholar
  20. 20.
    Lundstrom, K. (2006) Latest development in drug discovery on G protein-coupled receptors. Curr. Prot. Peptide Sci. 7, 465–470.CrossRefGoogle Scholar
  21. 21.
    Holenz, J., Merce, R., Diaz, J.L., Guitart, X., Codony, X., Dordal, A., Romero, G., Torrens, A., Mas, J., Andaluz, B., Hernandez, S., Monroy, X., Sanchez, E., Hernandez, E., Perez, R., Cubi, R., Sanfeliu, O., and Buschmann, H. (2005) Medicinal chemistry driven approaches toward novel and selective serotonin 5-HT6 receptor ligands. J. Med. Chem. 48, 1781–1795.PubMedCrossRefGoogle Scholar
  22. 22.
    Klabunde, T. and Hessler, G. (2002) Drug design strategies for targeting G protein-coupled receptors. Chem. Bio. Chem. 3, 928–944.PubMedGoogle Scholar
  23. 23.
    Veber, D.F. In Peptides, Chemistry and Biology: Proceedings of the 12th American Peptide Symposium. Smith, J.A. and Rivier, J.E. (eds.), ESCOM, Leiden, The Netherlands, pp. 3–14.Google Scholar
  24. 24.
    Flohr, S., Kurz, M., Kostenis, E., Brkovich, A., Fournier, A., and Klabunde, T. (2002) Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure–activity relationships and nuclear magnetic resonance studies on urotensin II. J. Med. Chem. 45, 1799–1805.PubMedCrossRefGoogle Scholar
  25. 25.
    Marriott, D.P., Dougall, I.G., Meghani, P., Liu, Y.-J., and Flower, D.R. (1999) Lead generation using pharmacophore mapping and three-dimensional database searching: application to muscarinic M(3) receptor antagonists. J. Med. Chem. 42, 3210–3216.PubMedCrossRefGoogle Scholar
  26. 26.
    Alfaro-Lopez, J., Okayama, T., Hosohata, K., Davis, P., Porreca, F., Yamamura, H.I., and Hruby, V.J. (1999) Exploring the structure–activity relationships of [1-(4-tert-butyl-3'-hydroxy)benzhydryl-4-benzylpiperazine] (SL-3111), a high-affinity and selective delta-opioid receptor nonpeptide agonist ligand. J. Med. Chem. 42, 5359–5368.PubMedCrossRefGoogle Scholar
  27. 27.
    Alexopoulos, K., Panagiotopoulos, D., Mavromoustakos, T., Fatseas, P., Paredes-Carbajal, M.C., Mascher, D., Mihailescu, S., and Matsoukas, J. (2001) Exploring the structure–activity relationships of [1-(4-tert-butyl-3'-hydroxy)benzhydryl-4-benzylpiperazine] (SL-3111), a high-affinity and selective delta-opioid receptor nonpeptide agonist ligand. J. Med. Chem. 44, 328–339.PubMedCrossRefGoogle Scholar
  28. 28.
    Neelamkavil, S., Arison, B., Birzin, E., Feng, J.J., Chen, K.H., Lin, A., Cheng, F.C., Taylor, L., Thornton, E.R., Smith, A.B. 3rd, and Hirschmann, R. (2005) Replacement of Phe6, Phe7, and Phe11 of d-Trp8-somatostatin-14 with l-pyrazinylalanine. Predicted and observed effects on binding affinities at hSST2 and hSST4. An unexpected effect of the chirality of Trp8 on NMR spectra in methanol. J. Med. Chem. 16, 4025–4030.CrossRefGoogle Scholar
  29. 29.
    Cramer, R.D., Patterson, D.E., and Brunce, J.D. (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog. Clin. Biol. Res. 291, 161–165.PubMedGoogle Scholar
  30. 30.
    Kim, K.H., Greco, G., Novellino, E., Silipo, C., and Vittoria A. (1993) Use of the hydrogen bond potential function in a comparative molecular field analysis (CoMFA) on a set of benzodiazepines. J. Comput. Aided Mol. Des. 7, 263–280.PubMedCrossRefGoogle Scholar
  31. 31.
    Salama, I., Hocke, C., Utz, W., Prante, O., Boeckler, F., Hübner, H., Kuwert, T., and Gmeiner, P. (2007) Structure-selectivity investigations of D2-like receptor ligands by CoMFA and CoMSIA guiding the discovery of D3 selective PET radioligands. J. Med. Chem. 50, 489–500.PubMedCrossRefGoogle Scholar
  32. 32.
    Tropsha, A., and Wang, S.X. (2006) QSAR modeling of GPCR ligands: methodologies and examples of applications. Ernst. Schering. Found. Symp. Proc. 2, 49–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Gaillard, P., Carrupt, P.-A., Testa, B., and Schambel, P. (1996) Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylindoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure–affinity relationship models. J. Med. Chem. 39, 126–134.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopez-Rodriguez, M.L., Murcia, M., Benhamu, B., Viso, A., Campillo, M., and Pardo, L. (2002) Benzimidazole derivatives. 3. 3D-QSAR/CoMFA model and computational simulation for the recognition of 5-HT(4) receptor antagonists. J. Med. Chem. 45, 4806–4815.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu, C., Decker, E.R., Blok, N., Bui, H., Chen, Q., Raju, B., Bourgoyne, A.R., Knowles, V., Biediger, R.J., Market, R.V., Lin, S., Dupré, B., Kogan, T.P., Holland, G.W., Brock, T.A., and Dixon, R.A. (1999) Endothelin antagonists: substituted mesitylcarboxamides with high potency and selectivity for ET(A) receptors. J. Med. Chem. 42, 4485–4499.PubMedCrossRefGoogle Scholar
  36. 36.
    Siddiqi, S.M., Pearlstein, R.A., Sanders, L.H., and Jacobsen, K.A. (1995) Comparative molecular field analysis of selective A3 adenosine receptor agonists. Bioorg. Med. Chem. 3, 1331–1343.PubMedCrossRefGoogle Scholar
  37. 37.
    Rieger, J.M., Brown, M.L., Sullivan, G.W., Linden, J., and Macdonald, T.L. (2001) Design, synthesis, and evaluation of novel A2A adenosine receptor agonists. J. Med. Chem. 44, 531–539.PubMedCrossRefGoogle Scholar
  38. 38.
    Lopez-Rodriguez, M.L., Rosado, M.L., Benhamu, B., Morcillo, M.J., Fernandez, E., and Schaper, K.J. (1997) Synthesis and structure – activity relationships of a new model of arylpiperazines. 2. Three-dimensional quantitative structure–activity relationships of hydantoin-phenylpiperazine derivatives with affinity for 5-HT1A and alpha 1 receptors. A comparison of CoMFA models. J. Med. Chem. 40, 1648–1656.PubMedCrossRefGoogle Scholar
  39. 39.
    Forbes, I.T., Dabbs, S., Duckworth, D.M., Ham, P., Jones, G.E., King, F.D., Saunders, D.V., Blaney, F.E., Naylor, C.B., Baxter, G.S., Blackburn, T.P., Kennett, G.A., and Wood, M.D. (1996) Synthesis, biological activity, and molecular modeling of selective 5-HT(2C/2B) receptor antagonists. J. Med. Chem. 39, 4966–4977.PubMedCrossRefGoogle Scholar
  40. 40.
    Bromidge, S.M., Dabbs, S., Davies, D.T., Duckworth, D.M., Forbes, I.T., Ham, P., Jones, G.E., King, F.D., Saunders, D.V., Starr, S., Thewlis, K.M., Wyman, P.A., Blaney, F.E., Naylor, C.B., Bailey, F., Blackburn, T.P., Holland, V., Kennett, G.A., Riley, G.J., and Wood, M.D. (1998) Novel and selective 5-HT2C/2B receptor antagonists as potential anxiolytic agents: synthesis, quantitative structure–activity relationships, and molecular modeling of substituted 1-(3-pyridylcarbamoyl)indolines. J. Med. Chem. 41, 1598–1612.PubMedCrossRefGoogle Scholar
  41. 41.
    Shacham, S., Topf, M., Avisar, N., Glaser, F., Marantz, Y., Bar-Haim, S., Noiman, S., Naor, Z., and Becker, O.M. (2001) Modeling the 3D structure of GPCRs from sequence. Med. Res. Rev. 21, 472–483.PubMedCrossRefGoogle Scholar
  42. 42.
    Bissantz, C., Bernard, P., Hibert, M., and Rognan D. (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G protein-coupled receptors suitable targets? Proteins 50, 5–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Shacham, S., Marantz, Y., Bar-Haim, S., Kalid, O., Warshaviak, D., Avisar, N., Inbal, B., Heifetz, A., Fichman, M., Topf, M., Naor, Z., Noiman, S., and Becker, O.M. (2004) PREDICT modeling and in-silico screening for G protein-coupled receptors. Proteins 57, 51–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Sirois, S., Hatzakis, G., Wei, D., Du, Q., and Chou, K.C. (2005) Assessment of chemical libraries for their druggability. Comput. Biol. Chem. 29, 55–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Milligan, G. (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66, 1–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones, K.A., Borowsky, B., Tamm, J.A., Craig, D.A., Durkin, M.M., Dai, M., Yao, W.J., Johnson, M., Gunwaldsen, C., Huang, L.Y., Tang, C., Shen, Q., Salon, J.A., Morse, K., Laz, T., Smith, K.E., Nagarathnam, D., Noble, S.A., Branchek, T.A., and Gerald, C. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., and Adler, E. (2002) Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99, 4692–4696.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao, G.Q., Zhang, Y., Hoon, M.A., Chandrashekar, J., Erlenbach, I., Ryba, N.J., and Zuker, C.S. (2003) The receptors for mammalian sweet and umami taste. Cell 115, 255–266.PubMedCrossRefGoogle Scholar
  49. 49.
    Baneres, J.L., and Parello, J. (2003) Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G protein. J. Mol. Biol. 329, 815–829.PubMedCrossRefGoogle Scholar
  50. 50.
    Tallman, J. (2000) Dimerization of G protein-coupled receptors: implications for drug design and signaling. Neuropsychopharmacology 23, S1–S2.PubMedCrossRefGoogle Scholar
  51. 51.
    George, S.R., O’Dowd, B.F., and Lee, S.P. (2002) G protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820.PubMedCrossRefGoogle Scholar
  52. 52.
    Civelli, O. (2005) In G Protein-coupled Receptors in Drug Discovery. Lundstrom, K. and Chiu, M.(eds.), CRC Press, Boca Rotan, FL, USA, pp. 337–356.Google Scholar
  53. 53.
    Koster, A., Montkowski, A., Schulz, S., Stube, E.M., Knaudt, K., Jenck, F., Moreau, J.L., Nothacker, H.P., Civelli, O., and Reinscheid, R.K. (1999) Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. USA 96, 10444–10449.PubMedCrossRefGoogle Scholar
  54. 54.
    Chemelli, R.M., Willie, J.T., Sinton, C.M., Elmquist, J.K., Scammell, T., Lee, C., Richardson, J.A., Williams, S.C., Xiong, Y., Kisanuki, Y., Fitch, T.E., Nakazato, M., Hammer, R.E., Saper, C.B., and Yanagisawa, M. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.PubMedCrossRefGoogle Scholar
  55. 55.
    Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Tanaka, H., Williams, S.C., Richardson, J.A., Kozlowski, G.P., Wilson, S., Arch, J.R., Buckingham, R.E., Haynes, A.C., Carr, S.A., Annan, R.S., McNulty, D.E., Liu, W.S., Terrett, J.A., Elshourbagy, N.A., Bergsma, D.J., and Yanagisawa, M. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.PubMedCrossRefGoogle Scholar
  56. 56.
    Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., and Matsukura, S. (2001) A role for ghrelin in the central regulation of feeding. Nature 409, 194–198.PubMedCrossRefGoogle Scholar
  57. 57.
    Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, S., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., and Fujino, M. (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G protein-coupled receptor. Nature 411, 613–617.PubMedCrossRefGoogle Scholar
  58. 58.
    Lundstrom, K. (2006) Biology of G protein-coupled receptors. In G Protein-Coupled Receptors in Drug Discovery. Lundstrom, K. and Chiu, M. (eds.), CRC Press, Boca Raton, FL, USA, pp. 3–14.Google Scholar
  59. 59.
    Spirin, A.S., Baranov, V.I., Ryabova, L.A., Ovodov, S.Y., and Alakhov, Y.B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.PubMedCrossRefGoogle Scholar
  60. 60.
    Klammt, C., Lohr, F., Schafer, B., Haase, W., Dotsch, V., Ruterjans, H., Glaubitz, C., and Bernhard, F. (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem. 271, 568–580.PubMedCrossRefGoogle Scholar
  61. 61.
    Lundstrom, K., Wagner, R., Reinhart, C., Desmyter, A., Cherouati, N., Magnin, T., Zeder-Lutz, G., Courtot, M., Prual, C., André, N., Hassaine, G., Michel, H., Cambillau, C., and Pattus, F. (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J. Struct. Funct. Genomics 7, 77–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Luca, S., White, J.F., Sohal, A.K., Filippov, D.V., van Boom, J.H., Grisshammer, R., and Baldus, M. (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100, 10706–10711.PubMedCrossRefGoogle Scholar
  63. 63.
    Kiefer, H. (2003) In vitro folding of alpha-helical membrane proteins. Biochim. Biophys. Acta 1610, 57–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Weiss, H.M., and Grisshammer, R. (2002) Purification and characterization of the human adenosine A2a receptor functionally expressed in Escherichia coli. Eur. J. Biochem. 269, 82–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Grisshammer, R., White, J.F., Trinh, L.B., and Shiloach, J. (2005) Large-scale expression and purification of a G protein-coupled receptor for structure determination – an overview. J. Struct. Funct. Genomics 6, 159–163.PubMedCrossRefGoogle Scholar
  66. 66.
    Winter-Vann, A.M., Martinez, L., Bartus, C., Levay, A., and Turner, G.J. (2001) G protein-coupled expression in Halobacterium salinarum. In Perspectives on Solid State NMR in Biology. Kuehne, S.R. and de Groot, H. (eds.), Doordrecht, Kluwer, The Netherlands, pp. 141–159.Google Scholar
  67. 67.
    Kunji, E.R., Slotboom, D.J. and Poolman, B. (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610, 97–108.PubMedCrossRefGoogle Scholar
  68. 68.
    David, N.E., Gee, M., Andersen, B., Naider, F., Thorner, J., and Stevens, R.C. (1997) Expression and purification of the Saccharomyces cerevisiae alpha-factor receptor (Ste2p), a 7-transmembrane-segment G protein-coupled receptor. J. Biol. Chem. 272, 15553–15561.PubMedCrossRefGoogle Scholar
  69. 69.
    Andersen, B., and Stevens, R.C. (1998) The human D1A dopamine receptor: heterologous expression in Saccharomyces cerevisiae and purification of the functional receptor. Protein Expr. Purif. 13, 111–119.PubMedCrossRefGoogle Scholar
  70. 70.
    Weiss, H.M., Haase, W., Michel, H., and Reilander, H. (1998) Comparative biochemical and pharmacological characterization of the mouse 5HT5A 5-hydroxytryptamine receptor and the human beta2-adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem. J. 330, 1137–1147.PubMedGoogle Scholar
  71. 71.
    André, N., Cherouati, N., Prual, C., Steffan, T., Zeder-Lutz, G., Magnin, T., Pattus, F., Michel, H., Wagner, R., and Reinhart, C. (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. 15, 1115–1126.PubMedCrossRefGoogle Scholar
  72. 72.
    Massotte, D. (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim. Biophys. Acta 1610, 77–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Akermoun, M., Koglin, M., Zvalova-Iooss, D., Folschweiller, N., Dowell, S.J., and Gearing, K.L. (2005) Characterization of 16 human G protein-coupled receptors expressed in baculovirus-infected insect cells. Protein Expr. Purif. 44, 65–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Reeves, P.J., Callewaert, N., Contreras, R., and Khorana, H.G. (2002) Rhodopsin-HEK structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424.PubMedCrossRefGoogle Scholar
  75. 75.
    Lundstrom, K. (2003) Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta 1610, 90–96.PubMedCrossRefGoogle Scholar
  76. 76.
    Hassaine, G., Wagner, R., Kempf, J., Cherouati, N., Hassaine, N., Prual, C., André, N., Reinhart, C., Pattus, F., and Lundstrom, K. (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr. Purif. 45, 343–351.PubMedCrossRefGoogle Scholar
  77. 77.
    Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.PubMedCrossRefGoogle Scholar
  78. 78.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.PubMedCrossRefGoogle Scholar
  79. 79.
    Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., and Stevens, R.C. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265.PubMedCrossRefGoogle Scholar
  80. 80.
    Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., and Kobilka, B.K. (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou, W., Flanagan, C., Ballesteros, J.A., Konvicka, K., Davidson, J.S., Weinstein, H., Millar, R.P., and Sealfon, S.C. (1994) A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol. Pharmacol. 45, 165–170.PubMedGoogle Scholar
  82. 82.
    Fong, T.M., Yu, H., Huang, R.R., and Strader, C.D. (1992) The extracellular domain of the neurokinin-1 receptor is required for high-affinity binding of peptides. Biochemistry 31, 11806–11811.PubMedCrossRefGoogle Scholar
  83. 83.
    Huang, R.R., Yu, H., Strader, C.D., and Fong, T.M. (1994) Interaction of substance P with the second and seventh transmembrane domains of the neurokinin-1 receptor. Biochemistry 33, 3007–3013.PubMedCrossRefGoogle Scholar
  84. 84.
    Gether, U., Johansen, T.E., Snider, R.M., Lowe, J.A. 3rd., Nakanishi, S., and Schwartz, T.W. (1993) Different binding epitopes on the NK1 receptor for substance P and non-peptide antagonist. Nature 362, 345–348.PubMedCrossRefGoogle Scholar
  85. 85.
    Sachais, B.S., Snider, R.M., Lowe, J.A. 3rd., and Krause, J.E. (1993) Molecular basis for the species selectivity of the substance P antagonist CP-96,345. J. Biol. Chem. 268, 2319–2323.PubMedGoogle Scholar
  86. 86.
    Lundstrom, K., Hawcock, A.B., Vargas, A., Ward, P., Thomas, P., and Naylor, A. (1997) Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity. Eur. J. Pharmacol. 337, 73–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Tota, M.R., Candelore, M.R., Dixon, R.A. and Strader, C.D. (1991) Biophysical and genetic analysis of the ligand-binding site of the beta-adrenoceptor. Trends Pharmacol. Sci. 12, 4–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Spedding, M., Newman-Tancredi, A., Millan, M.J., Dacquet, C., Michel, A.N., Jacoby, E., Vickery, B., and Tallentire, D. (1998) Interaction of the anxiogenic agent, RS-30199, with 5-HT1A receptors: modulation of sexual activity in the male rat. Neuropharmacology 37, 769–780.PubMedCrossRefGoogle Scholar
  89. 89.
    Trumpp-Kallmeyer, S., Joflack, J., Bruinvels, A., and Hibert, M. (1992) Modeling of G protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J. Med. Chem. 35, 3448–3462.PubMedCrossRefGoogle Scholar
  90. 90.
    Schwartz, T.W., and Rosenkilde, M.M. (1996) Is there a “lock” for all agonist “keys” in 7TM receptors? Trends Pharmacol. Sci. 17, 213–216.PubMedCrossRefGoogle Scholar
  91. 91.
    Soudijn, W., Van Wijngaarden, I., and Ijzerman, A.P. (2004) Allosteric modulation of G protein-coupled receptors: perspectives and recent developments. Drug Discov. Today 9, 752–758.PubMedCrossRefGoogle Scholar
  92. 92.
    Christopoulos, A. (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210.PubMedCrossRefGoogle Scholar
  93. 93.
    Elling, C.E., and Schwartz, T.W. (1996) Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. EMBO J. 15, 6213–6219.PubMedGoogle Scholar
  94. 94.
    Thirstrup, K., Elling, C.E., Hjorth, S.A., and Schwartz, T.W. (1996) Construction of a high affinity zinc switch in the kappa-opioid receptor. J. Biol. Chem. 271, 7875–7878.PubMedCrossRefGoogle Scholar
  95. 95.
    Zeng, F.Y., Hopp, A., Soldner, A., and Wess, J. (1999) Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. J. Biol. Chem. 274, 16629–16640.PubMedCrossRefGoogle Scholar
  96. 96.
    Turcatti, G., Nemeth, K., Edgerton, M.D., Meseth, U., Talabot, F., Peitsch, M., Knowles, J., Vogel, H., and Chollet, A. (1996) Probing the structure and function of the tachykinin neurokinin-2 receptor through biosynthetic incorporation of fluorescent amino acids at specific sites. J. Biol. Chem. 271, 19991–19998.PubMedCrossRefGoogle Scholar
  97. 97.
    Altenbach, C., Cai, K., Khorana, H.G., and Hubbell, W.L. (1999) Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7931–7937.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kenneth Lundstrom
    • 1
  1. 1.PanTherapeuticsLutry

Personalised recommendations