G Protein-Coupled Receptors in Drug Discovery pp 239-252

Part of the Methods in Molecular Biology book series (MIMB, volume 552)

Resonant Waveguide Grating Biosensor for Whole-Cell GPCR Assays

  • Ye Fang
  • Ann M. Ferrie
  • Elizabeth Tran
Protocol

Summary

Current drug discovery campaigns for G protein-coupled receptors (GPCRs) heavily rely on assay technologies that use artificial cell systems tailored to a point-of-contact readout and as a consequence are mostly pathway biased. Recently, we have developed label-free optical biosensor cellular assays that are capable of examining systems cell biology of endogenous receptors and systems cell pharmacology of GPCR ligands in both physiologically and disease relevant environments. We have shown that these biosensor assays enable high-throughput screening of pathway-biased ligands acting on endogenous β2-adrenergic receptor in cells. These biosensor cellular assays hold the potential to reduce attrition rates in drug discovery and development process.

Key words

G protein-coupled receptor Optical biosensor Resonant waveguide grating biosensor Dynamic mass redistribution Ligand-directed functional selectivity 

References

  1. 1.
    Tiefenthaler, K., and Lukosz, W. (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6, 209–220.CrossRefGoogle Scholar
  2. 2.
    Barer, R., and Joseph, S. (1954) Refractometry of living cells. Part I. basic principles. Quart. J. Microsc. Science 95, 399–423.Google Scholar
  3. 3.
    Fang, Y., Ferrie, A.M., Fontaine, N.H., Mauro, J., and Balakrishnan, J. (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91, 1925–1940.PubMedCrossRefGoogle Scholar
  4. 4.
    Fang, Y. (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4, 583–595.PubMedCrossRefGoogle Scholar
  5. 5.
    Fang, Y. (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7, 2316–2329.CrossRefGoogle Scholar
  6. 6.
    Fang, Y., Frutos, A.G., and Verkleeren R. (2008) Label-free cell-based assays for GPCR screening. Comb. Chem. High Throughput Screen. 11, 357–369.PubMedCrossRefGoogle Scholar
  7. 7.
    Cooper, M.A. (2006) Optical biosensors: where next and how soon. Drug Discov. Today 11, 1061–1067.PubMedCrossRefGoogle Scholar
  8. 8.
    Milligan, G. (2003) High-content assays for ligand regulation of G protein-coupled receptors. Drug Discov. Today 8, 579–585.PubMedCrossRefGoogle Scholar
  9. 9.
    Fang, Y., Ferrie, A.M., Fontaine, N.H., and Yuen, P.K. (2005) Characteristics of dynamic mass redistribution of EGF receptor signaling in living cells measured with label free optical biosensors. Anal. Chem. 77, 5720–5725.PubMedCrossRefGoogle Scholar
  10. 10.
    Fang, Y., Li, G., and Peng, J. (2005) Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett. 579, 6365–6374.PubMedCrossRefGoogle Scholar
  11. 11.
    Fang, Y., Li, G., and Ferrie, A.M. (2007) Non-invasive optical biosensor for assaying endogenous G protein-coupled receptors in adherent cells. J. Pharmacol. Toxicol. Methods 55, 314–322.PubMedCrossRefGoogle Scholar
  12. 12.
    Fang, Y., and Ferrie, A.M. (2007) Optical biosensor differentiates signaling of endogenous PAR1 and PAR2 in A431 cells. BMC Cell Biol. 8, e24.CrossRefGoogle Scholar
  13. 13.
    Fang, Y., and Ferrie, A.M. (2008) Label-free optical biosensor for ligand-directed functional selectivity acting on β2 adrenoceptor in living cells. FEBS Lett. 582, 558–564.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, G., Ferrie, A.M., and Fang, Y. (2006) Label-free profiling of endogenous G protein-coupled receptors using a cell-based high throughput screening technology. J. Assoc. Lab. Automat. 11, 181–187.CrossRefGoogle Scholar
  15. 15.
    Coller, H.A., Sang, L., and Roberts, J.M. (2006) A new description of cellular quiescence. PLoS Biol. 4, e83.PubMedCrossRefGoogle Scholar
  16. 16.
    Kenakin, T. (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat. Rev. Drug Discov. 4, 919–927.PubMedCrossRefGoogle Scholar
  17. 17.
    Perez, D.M., and Karnik, S.S. (2005) Multiple signaling states of G protein-coupled receptors. Pharmacol. Rev. 57, 147–161.PubMedCrossRefGoogle Scholar
  18. 18.
    Delavier-Klutchko, C., Hoebeke, J., and Strosberg, A.D. (1984) The human carcinoma cell line A431 possesses large numbers of functional β2-adrenergic receptors. FEBS Lett. 169, 151–155.PubMedCrossRefGoogle Scholar
  19. 19.
    Morris, A.J., and Malbon, C.C. (1999) Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430.PubMedGoogle Scholar
  20. 20.
    Shih, M., and Malbon, C.C. (1994) Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and β2-adrenergic receptor kinase reveal distinctive cell-type-specific roles in agonist-induced desensitization. Proc. Natl. Acad. Sci. USA 91, 12193–12197.PubMedCrossRefGoogle Scholar
  21. 21.
    Nelson, C.P., and Challiss, R.A.J. (2007) “Phenotypic” pharmacology: the influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem. Pharmacol. 73, 737–751.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ye Fang
    • 1
  • Ann M. Ferrie
    • 1
  • Elizabeth Tran
    • 1
  1. 1.Biochemical Technologies, Science and Technology DivisionCorning IncorporatedCorningUSA

Personalised recommendations