Isolation of Extracellular Membranous Vesicles for Proteomic Analysis

  • Rommel A. Mathias
  • Justin W. Lim
  • Hong Ji
  • Richard J. Simpson
Part of the Methods in Molecular Biology™ book series (MIMB, volume 528)


Membranous vesicles are constitutively released by a multitude of cell types. Following fusion of multivesicular bodies with the plasma membrane, endocytic vesicles, 30–90 nm in size termed exosomes are released extracellularly. Whilst several groups have reported the presence of exosomes in cell-culture conditioned medium, their biological and physiological functions still remain unclear. In addition, exosomes have been detected in body fluids associated with disease, further demonstrating their potential as diagnostic biomarkers. This protocol employs size filtration followed by ultracentrifugation to isolate and purify exosomes from the colon carcinoma cell line LIM 1215. Morphological visualisation and characterisation is based on electron microscopy and western blotting, whilst protein identification is achieved using a combination of 1D SDS-PAGE and LC-MS/MS.

Key words

Membranous vesicles conditioned medium exosomes LIM 1215 proteomics 


  1. 1.
    Pan, B. T., and Johnstone, R. M. (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978.CrossRefPubMedGoogle Scholar
  2. 2.
    Harding, C., Heuser, J., and Stahl, P. (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97, 329–339.CrossRefPubMedGoogle Scholar
  3. 3.
    Fevrier, B., and Raposo, G. (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16, 415–421.CrossRefPubMedGoogle Scholar
  4. 4.
    Pan, B. T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M. (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101, 942–948.CrossRefPubMedGoogle Scholar
  5. 5.
    Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., and Turbide, C. (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262, 9412–9420.PubMedGoogle Scholar
  6. 6.
    Thery, C., Zitvogel, L., and Amigorena, S. (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2, 569–579.PubMedGoogle Scholar
  7. 7.
    Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., and Geuze, H. J. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183, 1161–1172.CrossRefPubMedGoogle Scholar
  8. 8.
    Wubbolts, R., Leckie, R. S., Veenhuizen, P. T., Schwarzmann, G., Mobius, W., Hoernschemeyer, J., Slot, J. W., Geuze, H. J., and Stoorvogel, W. (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278, 10963–10972.CrossRefPubMedGoogle Scholar
  9. 9.
    Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147, 599–610.CrossRefPubMedGoogle Scholar
  10. 10.
    Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S. (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166, 7309– 7318.PubMedGoogle Scholar
  11. 11.
    van Niel, G., Raposo, G., Candalh, C., Boussac, M., Hershberg, R., Cerf-Bensussan, N., and Heyman, M. (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Niel, G., Mallegol, J., Bevilacqua, C., Candalh, C., Brugiere, S., Tomaskovic-Crook, E., Heath, J. K., Cerf-Bensussan, N., and Heyman, M. (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52, 1690–1697.CrossRefPubMedGoogle Scholar
  13. 13.
    Bard, M. P., Hegmans, J. P., Hemmes, A., Luider, T. M., Willemsen, R., Severijnen, L. A., van Meerbeeck, J. P., Burgers, S. A., Hoogsteden, H. C., and Lambrecht, B. N. (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31, 114–121.CrossRefPubMedGoogle Scholar
  14. 14.
    Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., Patel, P., Selby, P. J., and Banks, R. E. (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4, 4019-4031.CrossRefPubMedGoogle Scholar
  15. 15.
    Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., Zitvogel, L., Burgers, S. A., Hoogsteden, H. C., and Lambrecht, B. N. (2004) Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 164, 1807–1815.PubMedGoogle Scholar
  16. 16.
    Pisitkun, T., Shen, R. F., and Knepper, M. A. (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101, 13368–13373.CrossRefPubMedGoogle Scholar
  17. 17.
    Segura, E., Amigorena, S., and Thery, C. (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35, 89–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Taylor, D. D., and Black, P. H. (1986) Shedding of plasma membrane fragments. Neoplastic and developmental importance. Dev Biol (N Y 1985) 3, 33–57.Google Scholar
  19. 19.
    Taylor, D. D., Taylor, C. G., Jiang, C. G., and Black, P. H. (1988) Characterization of plasma membrane shedding from murine melanoma cells. Int J Cancer 41, 629–635.CrossRefPubMedGoogle Scholar
  20. 20.
    Dolo, V., Adobati, E., Canevari, S., Picone, M. A., and Vittorelli, M. L. (1995) Membrane vesicles shed into the extracellular medium by human breast carcinoma cells carry tumor-associated surface antigens. Clin Exp Metastasis 13, 277–286.CrossRefPubMedGoogle Scholar
  21. 21.
    Dolo, V., Ginestra, A., Cassara, D., Violini, S., Lucania, G., Torrisi, M. R., Nagase, H., Canevari, S., Pavan, A., and Vittorelli, M. L. (1998) Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 58, 4468–4474.PubMedGoogle Scholar
  22. 22.
    Hoorn, E. J., Pisitkun, T., Zietse, R., Gross, P., Frokiaer, J., Wang, N. S., Gonzales, P. A., Star, R. A., and Knepper, M. A. (2005) Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton) 10, 283–290.CrossRefGoogle Scholar
  23. 23.
    Lamparski, H. G., Metha-Damani, A., Yao, J. Y., Patel, S., Hsu, D. H., Ruegg, C., and Le Pecq, J. B. (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270, 211–226.PubMedGoogle Scholar
  24. 24.
    Koga, K., Matsumoto, K., Akiyoshi, T., Kubo, M., Yamanaka, N., Tasaki, A., Nakashima, H., Nakamura, M., Kuroki, S., Tanaka, M., and Katano, M. (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25, 3703–3707.PubMedGoogle Scholar
  25. 25.
    Moritz, R. L., Ji, H., Schutz, F., Connolly, L. M., Kapp, E. A., Speed, T. P., and Simpson, R. J. (2004) A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem 76, 4811–4824.CrossRefPubMedGoogle Scholar
  26. 26.
    Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21, 1707–1732.CrossRefPubMedGoogle Scholar
  27. 27.
    Phillips, H. J., and Terryberry, J. E. (1957) Counting actively metabolizing tissue cultured cells. Exp Cell Res 13, 341–347.CrossRefPubMedGoogle Scholar
  28. 28.
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S., and Zitvogel, L. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7, 297–303.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rommel A. Mathias
    • 1
  • Justin W. Lim
    • 2
  • Hong Ji
    • 3
  • Richard J. Simpson
    • 4
  1. 1.Joint Proteomics LaboratoryLudwig Institute for Cancer Research & The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of MelbourneMelbourneAustralia
  3. 3.Joint Proteomics LaboratoryLudwig Institute for Cancer Research & The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
  4. 4.Joint ProteomicS LaboratoryLudwig Institute for Cancer Research & The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne HospitalParkvilleAustralia

Personalised recommendations