Imaging Seizure Propagation In Vitro

  • Andrew J. Trevelyan
  • Rafael Yuste
Part of the Neuromethods book series (NM, volume 40)


This is perhaps the most beautiful time in human history; it is really pregnant with all kinds of creative possibilities made possible by science and technology.  Jonas Salk’s quotation seems particularly pertinent to recent developments in imaging technology, which have provided both beauty and insight in equal measure. We can now manipulate biological systems, both genetically and otherwise, to introduce fluorescent markers, literally adding colour to our preparations. These advances have occurred in parallel with remarkable developments in microscopy technology, with novel means of illumination and light detection allowing imaging to be done in ever more inaccessible places, with ever improving temporal and spatial resolution. A critical step in the application of these new technologies though is to characterize their relationship to older ways of measuring phenomena. In this chapter, we describe some of our efforts to use Ca2+ dyes to follow network activity, and in particular the progress of epileptiform events through cortical networks. The conventional means of recording epileptiform events has always been, and likely will continue to be, electrophysiological, but a careful calibration of imaging signals with respect to electrophysiological recordings can extend our data set immeasurably, providing new insights into old problems.

Key words

calcium imaging voltage-sensitive dye intrinsic optical imaging pyramidal cell interneuron inhibitory surround astrocyte glial cell propagation ictal interictal 


  1. 1.
    Prince DA, Wilder BJ. Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch Neurol 1967;16(2):194–202.PubMedCrossRefGoogle Scholar
  2. 2.
    Garaschuk O, Linn J, Eilers J, Konnerth A. Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 2000;3(5):452–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 1989;416:303–25.PubMedGoogle Scholar
  4. 4.
    Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge, UK: Cambridge University Press; 2003.Google Scholar
  5. 5.
    Timofeev I, Steriade M. Neocortical seizures: Initiation, development and cessation. Neuroscience 2004;123(2):299–336.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA. Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res 1986;398(1):215–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Flint AC, Maisch US, Kriegstein AR. Postnatal development of low [Mg2+] oscillations in neocortex. J Neurophysiol 1997;78(4):1990–6.PubMedGoogle Scholar
  8. 8.
    Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex. J Neurosci 2006;26(48):12447–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Trevelyan AJ, Sussillo D, Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci 2007;27(13):3383–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong BY, Prince DA. The lateral spread of ictal discharges in neocortical brain slices. Epilepsy Res 1990;7(1):29–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Dreier JP, Heinemann U. Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 1990;119(1):68–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Dreier JP, Zhang CL, Heinemann U. Phenytoin, phenobarbital, and midazolam fail to stop status epilepticus-like activityinduced by low magnesium in rat entorhinal slices, but can prevent its development. Acta Neurol Scand 1998;98(3):154–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Pfeiffer M, Draguhn A, Meierkord H, Heinemann U. Effects of gamma-aminobutyric acid (GABA) agonists and GABA uptake inhibitors on pharmacosensitive and pharmacoresistant epileptiform activity in vitro. Br J Pharmacol 1996;119(3):569–77.PubMedGoogle Scholar
  14. 14.
    Glasscock E, Qian J, Yoo JW, Noebels JL. Masking epilepsy by combining two epilepsy genes. Nat Neurosci 2007;10(12):1554–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Noebels JL. The biology of epilepsy genes. Annu Rev Neurosci 2003;26:599–625.PubMedCrossRefGoogle Scholar
  16. 16.
    Noebels JL, Sidman RL. Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering. Science 1979;204(4399):1334–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. Embo J 2003;22(2):216–24.PubMedCrossRefGoogle Scholar
  18. 18.
    van Luijtelaar EL, Coenen AM. Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 1986;70(3):393–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Bertaso F, De Bock F, Bockaert J, Fagni L, Lerner-Natoli M. Disruption of mGluR7a C-terminal protein interactions triggers absence-like epileptic seizures. In Society for Neuroscience Abstracts; 2007, p. 333.11.Google Scholar
  20. 20.
    MacLean JN, Fenstermaker V, Watson BO, Yuste R. A visual thalamocortical slice. Nat Methods 2006;3(2):129–34.PubMedCrossRefGoogle Scholar
  21. 21.
    MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 2005;48(5):811–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Douglas RJ, Markram H, Martin KAC. Neocortex. In: Shepherd GM, ed. The Synaptic Organisation of the Brain. 5th edn. Oxford: Oxford University Press; 2004:499–558.Google Scholar
  23. 23.
    Douglas RJ, Martin KA. Neuronal circuits of the neocortex. Annu Rev Neurosci 2004;27:419–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Jefferys JG. Nonsynaptic modulation of neuronal activity in the brain: Electric currents and extracellular ions. Physiol Rev 1995;75(4):689–723.PubMedGoogle Scholar
  25. 25.
    Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 2004;24(31):6920–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001;4(8):803–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature 1994;369(6483):744–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Yuste R, Peinado A, Katz LC. Neuronal domains in developing neocortex. Science 1992;257(5070):665–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 1998;394(6689):189–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Gibson JR, Beierlein M, Connors BW. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 1999;402(6757):75–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Perez Velazquez JL, Carlen PL. Gap junctions, synchrony and seizures. Trends Neurosci 2000;23(2):68–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Hamzei-Sichani F, Kamasawa N, Janssen WG, et al. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc Natl Acad Sci U S A 2007;104(30):12548–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 1999;402(6757):72–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Kirov SA, Petrak LJ, Fiala JC, Harris KM. Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 2004;127(1):69–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature 2003;423(6937):283–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 2000;3(10):1027–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 1995;373(6515):612–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Volgushev M, Vidyasagar TR, Chistiakova M, Yousef T, Eysel UT. Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J Physiol 2000;522(Pt 1):59–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Trevelyan AJ, Jack J. Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 2002;539(Pt 2):623–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Hardingham NR, Larkman AU. The reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent. J Physiol 1998;507(Pt 1):249–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Hill MW, Wong M, Amarakone A, Rothman SM. Rapid cooling aborts seizure-like activity in rodent hippocampal-entorhinal slices. Epilepsia 2000;41(10):1241–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Yuste R, Katz LC. Transmitter-induced changes in intracellular free calcium in brain slice of developing neocortex. In Abstracts Society for Neuroscience Abstracts 1989;4,5(15):2.Google Scholar
  43. 43.
    Yuste R, Katz LC. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 1991;6(3):333–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Smetters D, Majewska A, Yuste R. Detecting action potentials in neuronal populations with calcium imaging. Methods 1999;18(2):215–21.PubMedCrossRefGoogle Scholar
  45. 45.
    The Handbook — A Guide to Fluorescent Probes and Labeling Technologies. 10th edn: Invitrogen.Google Scholar
  46. 46.
    Badea T, Goldberg J, Mao B, Yuste R. Calcium imaging of epileptiform events with single-cell resolution. J Neurobiol 2001;48(3):215–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Kerr JN, Greenberg D, Helmchen F. Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci USA 2005;102(39):14063–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS. In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 2005;94(2):1636–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Murayama M, Miyazaki K, Kudo Y, Miyakawa H, Inoue M. Optical monitoring of progressive synchronization in dentate granule cells during population burst activities. Eur J Neurosci 2005;21(12):3349–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Yaksi E, Friedrich RW. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 2006;3(5):377–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. Functional imaging with cellularresolution reveals precise micro-architecture in visual cortex. Nature 2005;433(7026):597–603.PubMedCrossRefGoogle Scholar
  52. 52.
    Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005;11(9):973–81.PubMedGoogle Scholar
  53. 53.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 2003;100(12):7319–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Heim N, Garaschuk O, Friedrich MW, et al. Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 2007;4(2):127–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Crepel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R. A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron 2007;54(1):105–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Whittington MA, Traub RD, Jefferys JG. Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. J Physiol 1995;486 (Pt 3):723–34.PubMedGoogle Scholar
  57. 57.
    Traub RD, Miles R. Neuronal networks of the hippocampus. Cambridge: Cambridge University Press; 1991.Google Scholar
  58. 58.
    Trevelyan AJ, Baldeweg T, van Drongelen W, Yuste R, Whittington M. The source of afterdischarge activity in neocortical tonic-clonic epilepsy. J Neurosci 2007;27(49):13513–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Albowitz B, Kuhnt U. Epileptiform activity in the guinea-pig neocortical slice spreads preferentially along supragranular layers–recordings with voltage-sensitive dyes. Eur J Neurosci 1995;7(6):1273–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Wadman WJ, Gutnick MJ. Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex. Neuroscience 1993;52(2):255–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Pinto DJ, Patrick SL, Huang WC, Connors BW. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J Neurosci 2005;25(36):8131–40.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrew J. Trevelyan
    • 1
  • Rafael Yuste
    • 2
  1. 1.Institute of NeuroscienceNewcastle UniversityFramlington PlaceUK
  2. 2.Department of Biological SciencesHHMI, Columbia UniversityNew YorkUSA

Personalised recommendations