Cetyltrimethylammonium Bromide Discontinuous Gel Electrophoresis of Proteins

Mr-Based Separation of Proteins with Retained Native Activity
  • Robert E. Akins
  • Rocky S. Tuan
Part of the Springer Protocols Handbooks book series (SPH)


This chapter describes a novel method of electrophoresis that allows the fine separation of proteins to be carried out with the retention of native activity. The system combines discontinuous gel electrophoresis in an arginine/N-Tris (hydroxymethyl) methylglycine) (Tricine) buffer with sample solubilization in cetyltrimethylammonium bromide (CTAB). Because the components that distinguish this system are CTAB, arginine, and Tricine and because CTAB is a cationic detergent, we refer to this method as CAT gel electrophoresis (1,2). Proteins separated on CAT gels appear as discrete bands, and their mobility is a logarithmic function of M r across a broad range of molecular weights. After CAT electrophoresis, many proteins retain high enough levels of native activity to be detected, and gel bands may be detected by both M r and protein-specific activities. In this chapter, we provide a description of the procedures for preparing and running CAT gels. We also provide some technical background information on the basic principles of CAT gel operation and some points to keep in mind when considering the CAT system.


Sodium Dodecyl Sulfate Native Activity Ammonium Persulfate Coomassie Brilliant Blue Electrophoresis Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akins, R. E., Levin, P., and Tuan, R. S. (1992) Cetyltrimethylammonium bromide discontinuous gel electrophoresis: M r-based separation of proteins with retention of enzymatic activity. Anal. Biochem. 202, 172–178.PubMedCrossRefGoogle Scholar
  2. 2.
    Akins, R. E. and Tuan, R. S. (1994) Separation of proteins using cetyltrimethylammonium bromide discontinuous gel electrophoresis. Mol. Biotech. 1, 211–228.CrossRefGoogle Scholar
  3. 3.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  4. 4.
    Shapiro, A. L., Vinuela, E., and Maizel, J. V. (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 28, 815–820.PubMedCrossRefGoogle Scholar
  5. 5.
    Weber, K. and Osborn, M. (1969) The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide electrophoresis. J. Biol. Chem. 244, 4406–4412.PubMedGoogle Scholar
  6. 6.
    Ornstein, L. (1964) Disc electrophoresis I: Background and theory. Ann. NY Acad. Sci. 121, 321–349.PubMedCrossRefGoogle Scholar
  7. 7.
    Davis, B. J. (1964) Disc electrophoresis II: Method and application to human serum proteins. Ann. NY Acad. Sci. 121, 404–427.PubMedCrossRefGoogle Scholar
  8. 8.
    Manrow, R. E. and Dottin, R. P. (1980) Renaturation and localization of enzymes in polyacrylamide gels: Studies with UDP-glucose pyrophosphorylase of Dictyostelium. Proc. Natl. Acad. Sci. USA 77, 730–734.PubMedCrossRefGoogle Scholar
  9. 9.
    Scheele, G. A. (1982) Two-dimensional electrophoresis in basic and clinical research, as exemplified by studies on the exocrine pancreas. Clin. Chem. 28, 1056–1061.PubMedGoogle Scholar
  10. 10.
    Hearing, V. J., Klingler, W. G., Ekel, T. M., and Montague, P. M. (1976) Molecular weight estimation of Triton X-100 solubilized proteins by polyacrylamide gel electrophoresis. Anal. Biochem. 126, 154–164.Google Scholar
  11. 11.
    Ferguson, K. (1964) Starch gel electrophoresis—Application to the classification of pituitary proteins and polypeptides. Metabolism 13, 985–1002.PubMedCrossRefGoogle Scholar
  12. 12.
    Hedrick, J. L. and Smith A. J. (1968) Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch. Biochem. Biophys. 126, 154–164.CrossRefGoogle Scholar
  13. 13.
    Tuan, R. S. and Knowles, K. (1984) Calcium activated ATPase in the chick embryonic chorioaliantoic membrane: Identification and topographic relationship with the calcium-biding protein. J. Biol. Chem. 259, 2754–2763.PubMedGoogle Scholar
  14. 14.
    Akin, D., Shapira, R., and Kinkade, J. M. (1985) The determination of molecular weights of biologically active proteins by cetyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Anal. Biochem. 145, 170–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Eley, M. H., Burns, P. C., Kannapell, C. C., and Campbell, P. S. (1979) Cetyltrimethylammonium bromide polyacrylamide gel electrophoresis: Estimation of protein subunit molecular weights using cationic detergents. Anal. Biochem. 92, 411–419.PubMedCrossRefGoogle Scholar
  16. 16.
    Marjanen, L. A. and Ryrie, I. J. (1974) Molecular weight determinations of hydrophilic proteins by cationic detergent electrophoresis: Application to membrane proteins. Biochem. Biophys. Acta 37, 442–450.Google Scholar
  17. 17.
    Panyim, S., Thitiponganich, R., and Supatimusro, D. (1977) A simplified gel electrophoretic system and its validity for molecular weight determinations of protein-cetyltrimethylammonium complexes. Anal. Biochem. 81, 320–327.PubMedCrossRefGoogle Scholar
  18. 18.
    Schick, M. (1975) Influence of cationic detergent on electrophoresis in polyacrylamide gel. Anal. Biochem. 63, 345–349.PubMedCrossRefGoogle Scholar
  19. 19.
    Spencer, M. and Poole, F. (1965) On the origin of crystallizable RNA from yeast. J. Mol. Biol. 11, 314–326.PubMedCrossRefGoogle Scholar
  20. 20.
    Reynolds, J. A. and Tanford, C. (1970) The gross conformation of protein-sodium dodedcyl sulfate complexes. J. Biol. Chem. 245, 5161–5165.PubMedGoogle Scholar
  21. 21.
    Tyagi, R. K., Babu, B. R., and Datta, K. (1993) Simultaneous determination of native and subunit molecular weights of proteins by pore limit electrophoresis and restricted use of sodium dodecyl sulfate. Electrophoresis 14, 826–828.PubMedCrossRefGoogle Scholar
  22. 22.
    Dawson, R. M. C., Elliott, D. C., Elliott, W. H., and Jones, K. M. (1986) Data for Biochemical Research. Clarendon Press, Oxford.Google Scholar
  23. 23.
    Bio-Rad (1987) “Bio-Rad Technical Bulletin #1156: Acrylamide Polymerization—A Practical Approach.” Bio-Rad Laboratories, Richmond, CA.Google Scholar
  24. 24.
    Oakley, B. R., Kirsch, D. R., and Morris, N. R. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361–363.PubMedCrossRefGoogle Scholar
  25. 25.
    Hames, B. D. and Rickwood, D. (1990) Gel Electrophoresis of Proteins: A Practical Approach. IRL, London.Google Scholar
  26. 26.
    Tanford, C., Nozaki, Y., Reynolds, J. A., and Makino, S. (1974) Molecular characterization of proteins in detergent solutions. Biochemistry 13, 2369–2376.PubMedCrossRefGoogle Scholar
  27. 27.
    Reynolds, J. A., Herbert, S., Polet, H., and Steinhardt, J. (1967) The binding of divers detergent anions to bovine serum albumin. Biochemistry 6, 937–947.PubMedCrossRefGoogle Scholar
  28. 28.
    Ray, A., Reynolds, J. A., Polet, H., and Steinhardt, J. (1966) Binding of large organic anions and neutral molecules by native bovine serum albumin. Biochemistry 5, 2606–2616.PubMedCrossRefGoogle Scholar
  29. 29.
    Akins, R. E. and Tuan, R. S. (1992) Electrophoretic techniques for the M r-based separation of proteins with retention of native activity. Mol. Biol. Cell 3, 185a.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Robert E. Akins
    • 1
  • Rocky S. Tuan
    • 2
  1. 1.Department of Medical Cell Biology, Nemours Research ProgramAI DuPont InstituteWilmington
  2. 2.Department of Orthopedic SurgeryThomas Jefferson UniversityPhiladelphia

Personalised recommendations