High Throughput Screening pp 159-186

Part of the Methods in Molecular Biology book series (MIMB, volume 565)

High-Throughput Automated Confocal Microscopy Imaging Screen of a Kinase-Focused Library to Identify p38 Mitogen-Activated Protein Kinase Inhibitors Using the GE InCell 3000 Analyzer

  • O. Joseph Trask
  • Debra Nickischer
  • Audrey Burton
  • Rhonda Gates Williams
  • Ramani A. Kandasamy
  • Patricia A. Johnston
  • Paul A. Johnston
Protocol

Abstract

The integration of fluorescent microscopy imaging technologies and image analysis into high-content screening (HCS) has been applied throughout the drug discovery pipeline to identify, evaluate, and advance compounds from early lead generation through preclinical candidate selection. In this chapter we describe the development, validation, and implementation of an HCS assay to screen compounds from a kinase-focused small-molecule library to identify inhibitors of the p38 pathway using the GE InCell 3000 automated imaging platform. The assay utilized a genetically modified HeLa cell line stably expressing mitogen-activated, protein-activating protein kinase-2 fused to enhanced green fluorescent protein (MK2–EGFP) and measured the subcellular distribution of the MK2–EGFP as a direct readout of p38 activation. The MK2–EGFP translocation assay performed in 384-well glass bottom microtiter plates exhibited a robust Z-factor of 0.46 and reproducible EC50 and IC50 determinations for activators and inhibitors, respectively. A total of 32,891 compounds were screened in singlicate at 50 μM and 156 were confirmed as inhibitors of p38-mediated MK2–EGFP translocation in follow-up IC50 concentration response curves. Thirty-one compounds exhibited IC50s less than 1 μM, and at least one novel structural class of p38 inhibitor was identified using this HCA/HCS chemical biology screening approach.

Keywords

High-content imaging High-content analysis High-content screening Confocal microscopy Kinase p38 MAPKAP-k2 GFP InCell 

References

  1. 1.
    Cowan, K. J. and Storey, K. B. (2003). Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol. 206, 1107–1115.CrossRefGoogle Scholar
  2. 2.
    Garrington, T. P. and Johnson, G. L. (1999). Organization and regulation of mitogen activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218. Also Refs. (14, 15).CrossRefGoogle Scholar
  3. 3.
    English, J. M. and Cobb, M. H. (2002). Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 23, 40–45.CrossRefGoogle Scholar
  4. 4.
    Johnston, P. A. and Johnston, P. A. (2002). Cellular platforms for HTS: three case studies. Drug Discov. Today 7, 353–363.CrossRefGoogle Scholar
  5. 5.
    Ono, K. and Han, J. (2000). The p38 signal transduction pathway, activation and function. Cell. Signal. 12, 1–13.CrossRefGoogle Scholar
  6. 6.
    Noble, M. E. M., Endicott, J. A., and Johnson, L. N. (2004). Protein Kinase Inhibitors: insights into drug design and structure. Science 303, 1800–1805.CrossRefGoogle Scholar
  7. 7.
    Regan, J., Breitfelder, S., Cirillo, P., Gilmore, T., Graham, A. G., Hickey, E., Klaus, B., Madwed, J., Moriak, M., Moss, N., Pargellis, C., Pav, S., Proto, A., Swinamer, A., Tong, L., and Torcellini, C. (2002). Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J. Med. Chem. 45, 2994–3008.CrossRefGoogle Scholar
  8. 8.
    Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., Liebetanz, J., Mestan, J., O'Reilly, T., Traxler, P., Chaudhuri, B., Fretz, H., Zimmermann, J., Meyer, T., Caravatti, G., Furet, P., and Manley, P. W. (2002). Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol. Ther. 93, 79–98.CrossRefGoogle Scholar
  9. 9.
    Zu, Y. L., Ai, Y., and Huang C. K. (1995). Characterization of an autoinhibitory domain in human mitogen-activated protein kinase-activated protein kinase 2. J. Biol. Chem. 270, 202–206.CrossRefGoogle Scholar
  10. 10.
    Engel, K., Kotlyarov, A., and Gaestel, M. (1998). Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J. 17, 3363–3371.CrossRefGoogle Scholar
  11. 11.
    Neininger, A., Thielemann, H., and Gaestel, M. (2001). FRET-based detection of different conformations of MK2. EMBO Rep. 2, 703–708.CrossRefGoogle Scholar
  12. 12.
    Williams, R. G., Kandasamy, R., Nickischer, D., Trask, O. J., Jr., Laethem, C., Johnston, P. A., and Johnston, P. A. (2006). Generation and characterization of a stable MK2-EGFP cell line and subsequent development of a high-content imaging assay on the Cellomics ArrayScan platform to screen for p38 mitogen-activated protein kinase inhibitors. Methods Enzymol. 414, 364–388.CrossRefGoogle Scholar
  13. 13.
    Trask, O. J., Jr., Baker, A., Williams, R. G., Kickischer, D., Kandasamy, R., Laethem, C., Johnston, P. A., and Johnston, P. A. (2006). Assay development and case history of a 32 K biased library high-content MK2-EGFP translocation screen to identify p38 MAPK inhibitors on the ArrayScan 3.1 imaging platform. Methods Enzymol. 414, 419–439.CrossRefGoogle Scholar
  14. 14.
    Almholt D. L., Loechel, F., Nielsen, S. J., Krog-Jensen, C., Terry, R., Bjorn, S. P., Pedersen, H. C., Praestegaard, M., Moller, S., Heide, M., Pagliaro, L., Mason, A. J., Butcher, S., and Dahl, S.W. (2004). Nuclear export inhibitors and kinase inhibitors identified using a MAPK-activated protein kinase 2 redistribution screen. Assay Drug Dev. Technol. 2, 7–20.CrossRefGoogle Scholar
  15. 15.
    Lundholt, B. K., Linde, V., Loechel, F., Pedersen, H. C., Moller, S., Praestegaard, M., Mikkelsen, I., Scudder, K., Bjorn, S. P., Heide, M., Arkhammar, P. O., Terry, R., and Nielsen, S. J. (2005). Identification of Akt pathway inhibitors using redistribution screening on the FLIPR and the InCell 3000 analyzer. J. Biomol. Screen. 10, 20–29.CrossRefGoogle Scholar
  16. 16.
    Oakley, R. H., Hudson, C. C., Cruickshank, R. D., Meyers, D. M., Payne, R. E., Jr., Rhem, S. M., and Loomis, C. R. (2002). The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev. Technol. 1, 21–30.CrossRefGoogle Scholar
  17. 17.
    Bennett, B. L., Sasaki, D. T., Murray, B. W., O'Leary, E. C., Sakata, S. T., Xu, W., Leisten, J. C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S. S., Manning, A. M., and Anderson, D. W. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.CrossRefGoogle Scholar
  18. 18.
    Han, Z., Boyle, D. L., Chang, L., Bennett, B., Karin, M., Yang, L., Manning, A. M., and Firestein, G. S. (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108, 73–81.Google Scholar
  19. 19.
    Zhang, J. H., Chung, T. D., and Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • O. Joseph Trask
    • 1
  • Debra Nickischer
    • 2
  • Audrey Burton
    • 3
  • Rhonda Gates Williams
    • 4
  • Ramani A. Kandasamy
    • 5
  • Patricia A. Johnston
    • 6
  • Paul A. Johnston
    • 7
  1. 1.Cellular Imaging TechnologiesDuke University Center for Drug DiscoveryDurhamUSA
  2. 2.Thermo Fisher ScientificPittsburghUSA
  3. 3.Scynexis, Inc., Research Triangle ParkTorontoUSA
  4. 4.BD Diagnostics – Diagnostic SystemsTriPathBurlingtonUSA
  5. 5.BASF Corporation, Research le ParkTriangAppletonUSA
  6. 6.Discovery Programs, Cellumen, Inc.PittsburghUSA
  7. 7.Department of PharmacologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations