Advertisement

Automated Patch Clamping Using the QPatch

  • Kenneth A. Jones
  • Nicoletta Garbati
  • Hong Zhang
  • Charles H. Large
Part of the Methods in Molecular Biology book series (MIMB, volume 565)

Abstract

Whole-cell voltage clamp electrophysiology using glass patch pipettes (1) is regarded as the gold standard for measurement of compound activity on ion channels. Despite the high quality of the data generated by this method, in its traditional format, patch clamping has limited use in drug screening due to very low throughput. Over the years, developments in microfabrication have driven the development of planar, multi-aperture technologies that are suitable for parallel, automated patch recording techniques. Here we present detailed methods for two common applications of the planar patch technology using one of the commercially available instruments. The results demonstrate (a) the high quality of whole-cell recordings obtainable from cell lines expressing human Nav1.2 or hERG ion channels, (b) the advantages of the methodology for increasing throughput, and (c) examples of how these assays support ion channel drug discovery.

Keywords

Automated patch clamp Electrophysiology QPatch Nav1.2 hERG Ion channels 

References

  1. 1.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.CrossRefGoogle Scholar
  2. 2.
    Klemic, K. G., Klemic, J. F., Reed, M. A., and Sigworth, F. J. (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens. Bioelectron. 17, 597–604.CrossRefGoogle Scholar
  3. 3.
    Dubin, A. E., Nasser, N., Rohrbacher, J., Hermans, A. N., Marrannes, R., Grantham, C., Van, R. K., Cik, M., Chaplan, S. R., Gallacher, D., Xu, J., Guia, A., Byrne, N. G., and Mathes, C. (2005) Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10, 168–181.CrossRefGoogle Scholar
  4. 4.
    Tao, H., Santa, A. D., Guia, A., Huang, M., Ligutti, J., Walker, G., Sithiphong, K., Chan, F., Guoliang, T., Zozulya, Z., Saya, S., Phimmachack, R., Sie, C., Yuan, J., Wu, L., Xu, J., and Ghetti, A. (2004) Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay. Drug Dev. Technol. 2, 497–506.CrossRefGoogle Scholar
  5. 5.
    Mathes, C. (2006) QPatch: the past, present and future of automated patch clamp. Expert. Opin. Ther Targets 10, 319–327.CrossRefGoogle Scholar
  6. 6.
    Schroeder, K., Neagle, B., Trezise, D. J., and Worley, J. (2003) Ionworks HT: a new high-throughput electrophysiology measurement platform. J. Biomol. Screen. 8, 50–64.CrossRefGoogle Scholar
  7. 7.
    Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307.CrossRefGoogle Scholar
  8. 8.
    Trudeau, M. C., Warmke, J. W., Ganetzky, B., and Robertson, G. A. (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95.CrossRefGoogle Scholar
  9. 9.
    Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan, A. T., Wallis, R., Camm, A. J., and Hammond, T. G. (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 58, 32–45.CrossRefGoogle Scholar
  10. 10.
    Guo, L. and Guthrie, H. (2005) Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J. Pharmacol. Toxicol. Methods. 52, 123–135.Google Scholar
  11. 11.
    Catterall, W. A. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 72, S15–S48.Google Scholar
  12. 12.
    Whitaker, W. R., Faull, R. L., Waldvogel, H. J., Plumpton, C. J., Emson, P. C., and Clare, J. J. (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res. Mol. Brain Res. 88, 37–53.CrossRefGoogle Scholar
  13. 13.
    Catterall, W. A. (1999) Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv Neurol. 79, 441–456.Google Scholar
  14. 14.
    Clare, J. J., Tate, S. N., Nobbs, M., and Romanos, M. A. (2000) Voltage-gated sodium channels as therapeutic targets. Drug Discov. Today 5, 506–520.CrossRefGoogle Scholar
  15. 15.
    Bean, B. P., Cohen, C. J., and Tsien, R. W. (1983) Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81, 613–642.CrossRefGoogle Scholar
  16. 16.
    Kuo, C. C. and Bean, B. P. (1994) Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol. Pharmacol. 46, 716–725.Google Scholar
  17. 17.
    Kuo, C. C. and Lu, L. (1997) Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br. J. Pharmacol. 121, 1231–1238.CrossRefGoogle Scholar
  18. 18.
    Witchel, H. J., Milnes, J. T., Mitcheson, J. S., and Hancox, J. C. (2002) Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J. Pharmacol. Toxicol. Methods 48, 65–80.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kenneth A. Jones
    • 1
  • Nicoletta Garbati
    • 2
  • Hong Zhang
    • 1
  • Charles H. Large
    • 2
  1. 1.Lundbeck Research, Inc.ParamusUSA
  2. 2.Department of BiologyPsychiatry CEDD, Glaxo SmithKline SpAVeronaItaly

Personalised recommendations