Advertisement

Photochemical Enhancement of DNA Delivery by EGF Receptor Targeted Polyplexes

  • Anette Bonsted
  • Ernst Wagner
  • Lina Prasmickaite
  • Anders HØgset
  • Kristian Berg
Part of the Methods in Molecular Biology™ book series (MIMB, volume 434)

Summary

Photochemical internalization (PCI) is a physico-chemical targeting method that enables light directed delivery of nucleic acids into cells. The technology is based on photosensitizers that localize in the membranes of endocytic vesicles. A light activation of the photosensitizers induces photochemical reactions that lead to rupture of the vesicular membranes. This results in the release of endocytosed compounds (e.g., nucleic acids) into the cell cytosol. Physico-chemical and biological targeting techniques can be combined to promote efficient and specific gene delivery to target cells. The present protocol describes PCI of epidermal growth factor receptor (EGFR)-targeted DNA polyplexes. The DNA polyplexes made are small (50-100 nm in diameter), and they contain polyethylenimine (PEI) conjugated with the EGF protein as a cell-binding ligand for EGFR-mediated endocytosis and polyethylene glycol (PEG) for masking the polyplex surface charge. PCI of such targeted PEG-PEI/DNA polyplexes enables high and EGFR-specific gene transfer activity in cells. Although describing in detail PCI of DNA polyplexes, the methodology presented in this protocol is also applicable for PCI of other gene therapy vectors (e.g. viral vectors), peptide nucleic acids (PNA), small interfering RNA (siRNA), and for vectors targeted to alternate cell surface receptors. Generally, PCI can be applied whenever 100% survival of the treated cell population is not required.

Key Words

Gene therapy epidermal growth factor polyethylenimine PEGylation photochemical internalization 

References

  1. 1.
    Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J., et al. (1999) Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res. 59, 1180–1183.PubMedGoogle Scholar
  2. 2.
    Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasmickaite, L., HØ, A., and Berg, K. (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem. Photobiol. 73, 388–395.CrossRefPubMedGoogle Scholar
  4. 4.
    Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549–553.CrossRefPubMedGoogle Scholar
  5. 5.
    HØgset, A., Prasmickaite, L., Tjelle, T. E., and Berg, K. (2000) Photochemical transfection: A new technology for light-induced, site-directed gene delivery. Hum. Gene Ther. 11, 869–880.CrossRefPubMedGoogle Scholar
  6. 6.
    HØgset, A., Engesæter, B. Ø., Prasmickaite, L., Berg, K., Fodstad, Ø., and Mælandsmo, G. M. (2002) Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther. 9, 365–371.CrossRefPubMedGoogle Scholar
  7. 7.
    Bonsted, A., HØgset, A., Hoover, F., and Berg, K. (2005) Photochemical enhancement of gene delivery to glioblastoma cells is dependent on the vector applied. Anticancer Res. 25, 291–298.PubMedGoogle Scholar
  8. 8.
    Folini, M., Berg, K., Millo, E., Villa, R., Prasmickaite, L., Daidone, M. G., Benatti. U., and Zaffaroni, N. (2003) Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res. 63, 3490–3494.PubMedGoogle Scholar
  9. 9.
    Shiraishi, T., and Nielsen, P. E. (2006) Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett. 580, 1451–1456.CrossRefPubMedGoogle Scholar
  10. 10.
    Selbo, P. K., Sivam, G., Fodstad, O., Sandvig, K., and Berg, K. (2001) In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int. J. Cancer 92, 761–766.CrossRefPubMedGoogle Scholar
  11. 11.
    Berg, K., Dietze, A., Kaalhus, O., and HØgset, A. (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin. Cancer Res. 11, 8476–8485.CrossRefPubMedGoogle Scholar
  12. 12.
    Nishiyama, N., Iriyama, A., Jang, W. D., Miyata, K., Itaka, K., Inoue, Y., et al. (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4, 934–941.CrossRefPubMedGoogle Scholar
  13. 13.
    Ndoye, A., Dolivet, G., Hogset, A., Leroux, A., Fifre, A., Erbacher, P. et al. (2006) Eradication of p53-Mutated Head and Neck Squamous Cell Carcinoma Xenografts Using Nonviral p53 Gene Therapy and Photochemical Internalization. Mol. Ther. 13, 1156–1162.CrossRefPubMedGoogle Scholar
  14. 14.
    Prasmickaite, L., HØ, A., Tjelle, T. E., Olsen, V. M., and Berg, K. (2000) Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J. Gene Med. 2, 477–488.CrossRefPubMedGoogle Scholar
  15. 15.
    Kloeckner, J., Prasmickaite, L., HØ, A., Berg, K., and Wagner, E. (2004) Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J. Drug Target. 12, 205–213.CrossRefPubMedGoogle Scholar
  16. 16.
    Ogris, M., Steinlein, P., Kursa, M., Mechtler, K., Kircheis, R., and Wagner, E. (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 5, 1425–1433.CrossRefPubMedGoogle Scholar
  17. 17.
    Bonsted, A., Engesæter, B. Ø., HØ, A., Mælandsmo, G. M., Prasmickaite, L., D’Oliveira, C., et al. (2006) Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J. Gene Med. 8, 286–297.CrossRefPubMedGoogle Scholar
  18. 18.
    Weyergang, A., Selbo, P. K., and Berg, K. (2006) Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-saporin. J. Control. Release 111, 165–173.CrossRefPubMedGoogle Scholar
  19. 19.
    Zou, S. M., Erbacher, P., Remy, J. S., and Behr, J. P. (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2, 128–134.CrossRefPubMedGoogle Scholar
  20. 20.
    Brissault, B., Kichler, A., Guis, C., Leborgne, C., Danos, O., and Cheradame, H. (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug. Chem. 14, 581–587.CrossRefPubMedGoogle Scholar
  21. 21.
    Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102, 5679–5684.CrossRefPubMedGoogle Scholar
  22. 22.
    Kursa, M., Walker, G. F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., et al. (2003) Novel Shielded Transferrin-Polyethylene Glycol-Polyethylenimine/DNA Complexes for Systemic Tumor-Targeted Gene Transfer. Bioconjug. Chem. 14, 222–231.CrossRefPubMedGoogle Scholar
  23. 23.
    Wolschek, M. F., Thallinger, C., Kursa, M., Rossler, V., Allen, M., Lichtenberger, C., et al. (2002) Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 36, 1106–1114.CrossRefPubMedGoogle Scholar
  24. 24.
    Plank, C., Zatloukal, K., Cotton, M., Mechtler, K., and Wagner, E. (1992) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug. Chem. 3, 533–539.CrossRefPubMedGoogle Scholar
  25. 25.
    Prasmickaite, L., HØgset, A., Selbo, P. K., Engesæter, B. Ø., Hellum, M., and Berg, K. (2002) Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. British J. Cancer 86, 652–657.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media 2008

Authors and Affiliations

  • Anette Bonsted
    • 1
  • Ernst Wagner
    • 2
  • Lina Prasmickaite
    • 3
  • Anders HØgset
    • 4
  • Kristian Berg
    • 1
  1. 1.Department of Radiation Biology, Institute for Cancer ResearchRikshospitalet-Radiumhospitalet Medical CenterMontebelloNorway
  2. 2.Pharmaceutical Biology-Biotechnology, Department of PharmacyLudwig-Maximilians-UniversitaetBaltimoreGermany
  3. 3.Department of Tumor Biology, Institute for Cancer ResearchRikshospitalet-Radiumhospitalet Medical CenterMontebelloNorway
  4. 4.PCI Biotech ASPCINorway

Personalised recommendations