Advertisement

Prediction of Posttranslational Modification of Proteins from Their Amino Acid Sequence

  • Birgit Eisenhaber
  • Frank Eisenhaber
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 609)

Abstract

If posttranslational modifications (PTMs) are chemical alterations of the protein primary structure during the protein’s life cycle as a result of an enzymatic reaction, then the motif in the substrate protein sequence that is recognized by the enzyme can serve as basis for predictor construction that recognizes PTM sites in database sequences. The recognition motif consists generally of two regions: first, a small, central segment that enters the catalytic cleft of the enzyme and that is specific for this type of PTM and, second, a sequence environment of about 10 or more residues with linker characteristics (a trend for small and polar residues with flexible backbone) on either side of the central part that are needed to provide accessibility of the central segment to the enzyme’s catalytic site. In this review, we consider predictors for cleavage of targeting signals, lipid PTMs, phosphorylation, and glycosylation.

Key words

posttranslational modifications GPI lipid anchor myristoylation prenylation farnesylation geranylgeranylation phosphorylation glycosylation peroxisomal localization protein function prediction 

References

  1. 1.
    Eisenhaber, F., Eisenhaber, B., Maurer-Stroh, S. (2003) Prediction of Post-translational modifications from amino acid sequence: problems, pitfalls, methodological hints. In Andrade, M. M. (ed.), Bioinformatics and Genomes: Current Perspectives. Horizon Scientific Press, Wymondham, pp. 81–105.Google Scholar
  2. 2.
    Eisenhaber, F. (2006) Prediction of protein function: two basic concepts and one practical recipe. In Eisenhaber, F. (ed.) Discovering Biomolecular Mechanisms with Computational Biology, 1st edition.Landes Biosciences and Eurekah.com, Georgetown. Chapter 3, pp. 39–54.CrossRefGoogle Scholar
  3. 3.
    Eisenhaber, B., Eisenhaber, F. (2007) Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? Curr Protein Pept Sci 8, 197–203.CrossRefPubMedGoogle Scholar
  4. 4.
    Eisenhaber, B., Eisenhaber, F., Maurer-Stroh, S., Neuberger, G. (2004) Prediction of sequence signals for lipid post-translational modifications: insights from case studies. Proteomics 4, 1614–1625.CrossRefPubMedGoogle Scholar
  5. 5.
    Puntervoll, P., Linding, R., Gemund, C., Chabanis-Davidson, S., Mattingsdal, M., Cameron, S., Martin, D. M., Ausiello, G., Brannetti, B., Costantini, A., et al. (2003) ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31, 3625–3630.CrossRefPubMedGoogle Scholar
  6. 6.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., de, C. E., Langendijk-Genevaux, P. S., Pagni, M., Sigrist, C. J. (2006) The PROSITE database. Nucleic Acids Res 34, D227–D230.CrossRefPubMedGoogle Scholar
  7. 7.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., de, C. E., Lachaize, C., Langendijk-Genevaux, P. S., Sigrist, C. J. (2008) The 20 years of PROSITE. Nucleic Acids Res 36, D245–D249.CrossRefPubMedGoogle Scholar
  8. 8.
    Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., Dunker, A. K. (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32, 1037–1049.CrossRefPubMedGoogle Scholar
  9. 9.
    Kiemer, L., Bendtsen, J. D., Blom, N. (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21, 1269–1270.CrossRefPubMedGoogle Scholar
  10. 10.
    Diella, F., Gould, C. M., Chica, C., Via, A., Gibson, T. J. (2008) Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res 36, D240–D244.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, H., Yang, J., Wang, M., Xue, L., Chou, K. C. (2005) Using fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24, 385–389.CrossRefPubMedGoogle Scholar
  12. 12.
    Cai, Y. D., Chou, K. C. (2006) Predicting membrane protein type by functional domain composition and pseudo-amino acid composition. J Theor Biol 238, 395–400.CrossRefPubMedGoogle Scholar
  13. 13.
    Chou, K. C., Cai, Y. D. (2005) Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model 45, 407–413.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, M., Yang, J., Liu, G. P., Xu, Z. J., Chou, K. C. (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Eng Des Sel 17, 509–516.CrossRefPubMedGoogle Scholar
  15. 15.
    Cai, Y. D., Zhou, G. P., Chou, K. C. (2003) Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84, 3257–3263.CrossRefPubMedGoogle Scholar
  16. 16.
    Cai, Y. D., Liu, X. J., Chou, K. C. (2001) Artificial neural network model for predicting membrane protein types. J Biomol Struct Dyn 18, 607–610.PubMedGoogle Scholar
  17. 17.
    Chou, K. C., Elrod, D. W. (1999) Prediction of membrane protein types and subcellular locations. Proteins 34, 137–153.CrossRefPubMedGoogle Scholar
  18. 18.
    O’Connor, E., Eisenhaber, B., Dalley, J., Wang, T., Missen, C., Bulleid, N., Bishop, P. N., Trump, D. (2005) Species specific membrane anchoring of nyctalopin, a small leucine-rich repeat protein. Hum Mol Genet 14, 1877–1887.CrossRefPubMedGoogle Scholar
  19. 19.
    Eisenhaber, B., Bork, P., Eisenhaber, F. (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292, 741–758.CrossRefPubMedGoogle Scholar
  20. 20.
    Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317, 541–557.CrossRefPubMedGoogle Scholar
  21. 21.
    Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol 317, 523–540.CrossRefPubMedGoogle Scholar
  22. 22.
    Bologna, G., Yvon, C., Duvaud, S., Veuthey, A. L. (2004) N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4, 1626–1632.CrossRefPubMedGoogle Scholar
  23. 23.
    Bendtsen, J. D., Nielsen, H., von, H. G., Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.CrossRefPubMedGoogle Scholar
  24. 24.
    Kall, L., Krogh, A., Sonnhammer, E. L. (2007) Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res 35, W429–W432.CrossRefPubMedGoogle Scholar
  25. 25.
    Emanuelsson, O., Brunak, S., von, H. G., Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.CrossRefPubMedGoogle Scholar
  26. 26.
    Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F. (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328, 581–592.CrossRefPubMedGoogle Scholar
  27. 27.
    Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F. (2003) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328, 567–579.CrossRefPubMedGoogle Scholar
  28. 28.
    Eisenhaber, B., Bork, P., Eisenhaber, F. (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11, 1155–1161.CrossRefPubMedGoogle Scholar
  29. 29.
    Eisenhaber, B., Bork, P., Yuan, Y., Loffler, G., Eisenhaber, F. (2000) Automated annotation of GPI anchor sites: case study C. elegans. Trends Biochem Sci 25, 340–341.CrossRefPubMedGoogle Scholar
  30. 30.
    Eisenhaber, B., Bork, P., Eisenhaber, F. (2001) Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng 14, 17–25.CrossRefPubMedGoogle Scholar
  31. 31.
    Eisenhaber, B., Wildpaner, M., Schultz, C. J., Borner, G. H., Dupree, P., Eisenhaber, F. (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133, 1691–1701.CrossRefPubMedGoogle Scholar
  32. 32.
    Eisenhaber, B., Schneider, G., Wildpaner, M., Eisenhaber, F. (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337, 243–253.CrossRefPubMedGoogle Scholar
  33. 33.
    Maurer-Stroh, S., Eisenhaber, F. (2004) Myristoylation of viral and bacterial proteins. Trends Microbiol 12, 178–185.CrossRefPubMedGoogle Scholar
  34. 34.
    Maurer-Stroh, S., Gouda, M., Novatchkova, M., Schleiffer, A., Schneider, G., Sirota, F. L., Wildpaner, M., Hayashi, N., Eisenhaber, F. (2004) MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 5, R21.CrossRefPubMedGoogle Scholar
  35. 35.
    Benetka, W., Mehlmer, N., Maurer-Stroh, S., Sammer, M., Koranda, M., Neumuller, R., Betschinger, J., Knoblich, J. A., Teige, M., Eisenhaber, F. (2008) Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle 7, 3709–3719.CrossRefPubMedGoogle Scholar
  36. 36.
    Maurer-Stroh, S., Eisenhaber, F. (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6, R55.CrossRefPubMedGoogle Scholar
  37. 37.
    Maurer-Stroh, S., Koranda, M., Benetka, W., Schneider, G., Sirota, F. L., Eisenhaber, F. (2007) Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 3, e66.CrossRefPubMedGoogle Scholar
  38. 38.
    Benetka, W., Koranda, M., Maurer-Stroh, S., Pittner, F., Eisenhaber, F. (2006) Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo. BMC Biochem 7, 6.CrossRefPubMedGoogle Scholar
  39. 39.
    Benetka, W., Koranda, M., Eisenhaber, F. (2006) Protein prenylation: an (almost) comprehensive overview on discovery history, enzymology and significance in physiology and disease. Chemical Monthly 137, 1241–1281.CrossRefGoogle Scholar
  40. 40.
    Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21, 639–644.CrossRefPubMedGoogle Scholar
  41. 41.
    Eisenhaber, B., Maurer-Stroh, S., Novatchkova, M., Schneider, G., Eisenhaber, F. (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 25, 367–385.CrossRefPubMedGoogle Scholar
  42. 42.
    Fankhauser, N., Maser, P. (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846–1852.CrossRefPubMedGoogle Scholar
  43. 43.
    Borner, G. H., Lilley, K. S., Stevens, T. J., Dupree, P. (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132, 568–577.CrossRefPubMedGoogle Scholar
  44. 44.
    Moran, P., Caras, I. W. (1994) Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa. J Cell Biol 125, 333–343.CrossRefPubMedGoogle Scholar
  45. 45.
    Caras, I. W., Weddell, G. N., Williams, S. R. (1989) Analysis of the signal for attachment of a glycophospholipid membrane anchor. J Cell Biol 108, 1387–1396.CrossRefPubMedGoogle Scholar
  46. 46.
    Udenfriend, S., Kodukula, K. (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 64, 563–591.PubMedGoogle Scholar
  47. 47.
    Emanuelsson, O., Brunak, S., von, H. G., Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.CrossRefPubMedGoogle Scholar
  48. 48.
    Howell, S., Lanctot, C., Boileau, G., Crine, P. (1994) A cleavable N-terminal signal peptide is not a prerequisite for the biosynthesis of glycosylphosphatidylinositol-anchored proteins. J Biol Chem 269, 16993–16996.PubMedGoogle Scholar
  49. 49.
    Nagy, A., Hegyi, H., Farkas, K., Tordai, H., Kozma, E., Banyai, L., Patthy, L. (2008) Identification and correction of abnormal, incomplete and mispredicted proteins in public databases. BMC Bioinformatics 9, 353.CrossRefPubMedGoogle Scholar
  50. 50.
    Poisson, G., Chauve, C., Chen, X., Bergeron, A. (2007) FragAnchor: a large-scale predictor of glycosylphosphatidylinositol anchors in eukaryote protein sequences by qualitative scoring. Genomics Proteomics Bioinformatics 5, 121–130.CrossRefPubMedGoogle Scholar
  51. 51.
    Pierleoni, A., Martelli, P. L., Casadio, R. (2008) PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9, 392.CrossRefPubMedGoogle Scholar
  52. 52.
    Johnson, S. A., Hunter, T. (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25.CrossRefPubMedGoogle Scholar
  53. 53.
    Linding, R., Jensen, L. J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M. B., Pawson, T. (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36, D695–D699.CrossRefPubMedGoogle Scholar
  54. 54.
    Neuberger, G., Schneider, G., Eisenhaber, F. (2007) pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol Direct 2, 1.CrossRefPubMedGoogle Scholar
  55. 55.
    Wong, Y. H., Lee, T. Y., Liang, H. K., Huang, C. M., Wang, T. Y., Yang, Y. H., Chu, C. H., Huang, H. D., Ko, M. T., Hwang, J. K. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35, W588–W594.CrossRefPubMedGoogle Scholar
  56. 56.
    Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., Brunak, S. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.CrossRefPubMedGoogle Scholar
  57. 57.
    Blom, N., Gammeltoft, S., Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–1362.CrossRefPubMedGoogle Scholar
  58. 58.
    Ingrell, C. R., Miller, M. L., Jensen, O. N., Blom, N. (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895–897.CrossRefPubMedGoogle Scholar
  59. 59.
    Kim, J. H., Lee, J., Oh, B., Kimm, K., Koh, I. (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20, 3179–3184.CrossRefPubMedGoogle Scholar
  60. 60.
    Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., Yao, X. (2008) GPS 2.0: Prediction of kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7, 1598–1608. CrossRefPubMedGoogle Scholar
  61. 61.
    Saunders, N. F., Brinkworth, R. I., Huber, T., Kemp, B. E., Kobe, B. (2008) Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 9, 245.CrossRefPubMedGoogle Scholar
  62. 62.
    Obenauer, J. C., Cantley, L. C., Yaffe, M. B. (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 3635–3641.CrossRefPubMedGoogle Scholar
  63. 63.
    Neuberger, G., Kunze, M., Eisenhaber, F., Berger, J., Hartig, A., Brocard, C. (2004) Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins. Genome Biol 5, R97.CrossRefPubMedGoogle Scholar
  64. 64.
    Gupta, R., Brunak, S. (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 310–322.Google Scholar
  65. 65.
    Julenius, K., Molgaard, A., Gupta, R., Brunak, S. (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.CrossRefPubMedGoogle Scholar
  66. 66.
    Chen, Y. Z., Tang, Y. R., Sheng, Z. Y., Zhang, Z. (2008) Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC Bioinformatics 9, 101.CrossRefPubMedGoogle Scholar
  67. 67.
    Li, S., Liu, B., Zeng, R., Cai, Y., Li, Y. (2006) Predicting O-glycosylation sites in mammalian proteins by using SVMs. Comput Biol Chem 30, 203–208.CrossRefPubMedGoogle Scholar
  68. 68.
    Gupta, R., Jung, E., Gooley, A. A., Williams, K. L., Brunak, S., Hansen, J. (1999) Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 9, 1009–1022.CrossRefPubMedGoogle Scholar
  69. 69.
    Julenius, K. (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17, 868–876.CrossRefPubMedGoogle Scholar
  70. 70.
    Johansen, M. B., Kiemer, L., Brunak, S. (2006) Analysis and prediction of mammalian protein glycation. Glycobiology 16, 844–853.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang, H., Tachibana, K., Zhang, Y., Iwasaki, H., Kameyama, A., Cheng, L., Guo, J., Hiruma, T., Togayachi, A., Kudo, T. et al. (2003) Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun 300, 738–744.CrossRefPubMedGoogle Scholar
  72. 72.
    Furmanek, A., Hofsteenge, J. (2000) Protein C-mannosylation: facts and questions. Acta Biochim Pol 47, 781–789.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Birgit Eisenhaber
    • 1
  • Frank Eisenhaber
    • 2
  1. 1.Experimental Therapeutic Centre (ETC)Bioinformatics Institute (BII), Agency for science, Technology, and Research (A*STAR)SingaporeSingapore
  2. 2.Bioinformatics Institute (BII), Agency for science, Technology, and Research (A*STAR)SingaporeSingapore

Personalised recommendations