Protein Folding, Misfolding, and Disease pp 97-120

Part of the Methods in Molecular Biology book series (MIMB, volume 752)

Solution-State Nuclear Magnetic Resonance Spectroscopy and Protein Folding

  • Lisa D. Cabrita
  • Christopher A. Waudby
  • Christopher M. Dobson
  • John Christodoulou


A protein undergoes a variety of structural changes during its folding and misfolding and a knowledge of its behaviour is key to understanding the molecular details of these events. Solution-state NMR spectroscopy is unique in that it can provide both structural and dynamical information at both high-resolution and at a residue-specific level, and is particularly useful in the study of dynamic systems. In this chapter, we describe NMR strategies and how they are applied in the study of protein folding and misfolding.

Key words

NMR spectroscopy Protein folding Isotopic labelling H/D exchange HSQC Diffusion 


  1. 1.
    Yamazaki, T., R. Muhandiram, and L.E. Kay. (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N-labeled proteins: application to 13C alpha carbons. J Am Chem Soc. 116, 8266–8278.CrossRefGoogle Scholar
  2. 2.
    Markus, M.A., K.T. Dayie, P. Matsudaira, and G. Wagner. (1994) Effect of deuteration on the amide proton relaxation rates in proteins. Heteronuclear NMR experiments on villin 14T. J Magn Reson B. 105, 192–195.PubMedCrossRefGoogle Scholar
  3. 3.
    Kobayashi, M., H. Yagi, T. Yamazaki, M. Yoshida, and H. Akutsu. (2008) Dynamic inter-subunit interactions in thermophilic F(1)-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR. J Biomol NMR. 40, 165–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Mittermaier, A. and L.E. Kay. (2002) Effect of deuteration on some structural parameters of methyl groups in proteins as evaluated by residual dipolar couplings. J Biomol NMR. 23, 35–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Vasos, P.R., J.B. Hall, R. Kummerle, and D. Fushman. (2006) Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection. J Biomol NMR. 36, 27–36.PubMedCrossRefGoogle Scholar
  6. 6.
    LeMaster, D.M. (1990) Uniform and selective deuteration in two-dimensional NMR of proteins. Annu Rev Biophys Biophys Chem. 19, 243–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Hwang, K.J., F. Mahmoodian, J.A. Ferretti, E.D. Korn, and J.M. Gruschus. (2007) Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain. Proc Natl Acad Sci U S A. 104, 784–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Fiaux, J., E.B. Bertelsen, A.L. Horwich, and K. Wüthrich. (2002) NMR analysis of a 900K GroEL GroES complex. Nature. 418, 207–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Sprangers, R. and L.E. Kay. (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature. 445, 618–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Sprangers, R., A. Gribun, P.M. Hwang, W.A. Houry, and L.E. Kay. (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci U S A. 102, 16678–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Artero, J.B., M. Hartlein, S. McSweeney, and P. Timmins. (2005) A comparison of refined X-ray structures of hydrogenated and perdeuterated rat gammaE-crystallin in H2O and D2O. Acta Crystallogr D Biol Crystallogr. 61, 1541–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Tugarinov, V., V. Kanelis, and L.E. Kay. (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc. 1, 749–54.PubMedCrossRefGoogle Scholar
  13. 13.
    McIntosh, L.P. and F.W. Dahlquist. (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys. 23, 1–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Whittaker, J.W. (2007) Selective isotopic labeling of recombinant proteins using amino acid auxotroph strains. Methods Mol Biol. 389, 175–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Cavanagh, J., Protein NMR spectroscopy: principles and practice. 2nd ed. 2007: Academic Press.Google Scholar
  16. 16.
    Radford, S.E., C.M. Dobson, and P.A. Evans. (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 358, 302–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Miranker, A., S.E. Radford, M. Karplus, and C.M. Dobson. (1991) Demonstration by NMR of folding domains in lysozyme. Nature. 349, 633–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Redfield, C., R.A. Smith, and C.M. Dobson. (1994) Structural characterization of a highly-ordered “molten globule” at low pH. Nat Struct Biol. 1, 23–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wijesinha-Bettoni, R., C.M. Dobson, and C. Redfield. (2001) Comparison of the denaturant-induced unfolding of the bovine and human alpha-lactalbumin molten globules. J Mol Biol. 312, 261–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Schanda, P., E. Kupce, and B. Brutscher. (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR. 33, 199–211.PubMedCrossRefGoogle Scholar
  21. 21.
    Hsu, S.T., P. Fucini, L.D. Cabrita, H. Launay, C.M. Dobson, and J. Christodoulou. (2007) Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci U S A. 104, 16516–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Cabrita, L.D., S.T. Hsu, H. Launay, C.M. Dobson, and J. Christodoulou. (2009) Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc Natl Acad Sci U S A. 106, 22239–22244.PubMedCrossRefGoogle Scholar
  23. 23.
    Pervushin, K., R. Riek, G. Wider, and K. Wuthrich. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 94, 12366–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez, C. and G. Wider. (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol. 13, 570–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Croke, R.L., C.O. Sallum, E. Watson, E.D. Watt, and A.T. Alexandrescu. (2008) Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci. 17, 1434–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Eliezer, D., E. Kutluay, R. Bussell, Jr., and G. Browne. (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol. 307, 1061–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Macao, B., W. Hoyer, A. Sandberg, A.C. Brorsson, C.M. Dobson, and T. Hard. (2008) Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. BMC Biotechnol. 8, 82.PubMedCrossRefGoogle Scholar
  28. 28.
    Song, J., L.W. Guo, H. Muradov, N.O. Artemyev, A.E. Ruoho, and J.L. Markley. (2008) Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc Natl Acad Sci U S A. 105, 1505–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Hayes, P.L., B.L. Lytle, B.F. Volkman, and F.C. Peterson. (2008) The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein Sci. 17, 571–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Reingewertz, T.H., H. Benyamini, M. Lebendiker, D.E. Shalev, and A. Friedler. (2009) The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng Des Sel. 22, 281–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Bermel, W., I. Bertini, I.C. Felli, M. Piccioli, and R. Pierattelli. (2005) 13C-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Res Sp. 48, 25–45.CrossRefGoogle Scholar
  32. 32.
    Arai, M. and K. Kuwajima. (2000) Role of the molten globule state in protein folding. Adv Protein Chem. 53, 209–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Ptitsyn, O.B. (1995) Molten globule and protein folding. Adv Protein Chem. 47, 83–229.PubMedCrossRefGoogle Scholar
  34. 34.
    Korzhnev, D.M., X. Salvatella, M. Vendruscolo, A.A. Di Nardo, A.R. Davidson, C.M. Dobson, and L.E. Kay. (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 430, 586–590.PubMedCrossRefGoogle Scholar
  35. 35.
    Hsu, S.-T.D., L.D. Cabrita, P. Fucini, C.M. Dobson, and J. Christodoulou. (2009) Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum. J Mol Biol. 388, 865–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia, P., L. Serrano, M. Rico, and M. Bruix. (2002) An NMR view of the folding process of a CheY mutant at the residue level. Structure. 10, 1173–1185.PubMedCrossRefGoogle Scholar
  37. 37.
    Redfield, C. (2004) Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods. 34, 121–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Quezada, C.M., B.A. Schulman, J.J. Froggatt, C.M. Dobson, and C. Redfield. (2004) Local and global cooperativity in the human alpha-lactalbumin molten globule. J Mol Biol. 338, 149–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Schulman, B.A., P.S. Kim, C.M. Dobson, and C. Redfield. (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 4, 630–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Uzawa, T., C. Nishimura, S. Akiyama, K. Ishimori, S. Takahashi, H.J. Dyson, and P.E. Wright. (2008) Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proc Natl Acad Sci U S A. 105, 13859–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Hughson, F.M., P.E. Wright, and R.L. Baldwin. (1990) Structural characterization of a partly folded apomyoglobin intermediate. Science. 249, 1544–8.PubMedCrossRefGoogle Scholar
  42. 42.
    van Mierlo, C.P., J.M. van den Oever, and E. Steensma. (2000) Apoflavodoxin (un)folding followed at the residue level by NMR. Protein Sci. 9, 145–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Jarymowycz, V.A. and M.J. Stone. (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev. 106, 1624–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Neudecker, P., P. Lundstrom, and L.E. Kay. (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J. 96, 2045–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Hansen, D.F., P. Vallurupalli, P. Lundstrom, P. Neudecker, and L.E. Kay. (2008) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc. 130, 2667–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Neudecker, P., A. Zarrine-Afsar, A.R. Davidson, and L.E. Kay. (2007) Phi-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy. Proc Natl Acad Sci U S A. 104, 15717–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Sugase, K., H.J. Dyson, and P.E. Wright. (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature.Google Scholar
  48. 48.
    Cavalli, A., X. Salvatella, C.M. Dobson, and M. Vendruscolo. (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A. 104, 9615–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Shen, Y., O. Lange, F. Delaglio, P. Rossi, J.M. Aramini, G. Liu, A. Eletsky, Y. Wu, K.K. Singarapu, A. Lemak, A. Ignatchenko, C.H. Arrowsmith, T. Szyperski, G.T. Montelione, D. Baker, and A. Bax. (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A. 105, 4685–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Vallurupalli, P., D.F. Hansen, E. Stollar, E. Meirovitch, and L.E. Kay. (2007) Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci U S A. 104, 18473–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Price, W.S., A.V. Barzykin, K. Hayamizu, and M. Tachiya. (1998) A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR. Biophys J. 74, 2259–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Stejskal, E.O. and J.E. Tanner. (1965) Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.CrossRefGoogle Scholar
  53. 53.
    Palmer, A.G., 3rd. (1997) Probing molecular motion by NMR. Curr Opin Struct Biol. 7, 732–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Wilkins, D.K., S.B. Grimshaw, V. Receveur, C.M. Dobson, J.A. Jones, and L.J. Smith. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry. 38, 16424–16431.PubMedCrossRefGoogle Scholar
  55. 55.
    Dehner, A. and H. Kessler. (2005) Diffusion NMR spectroscopy: folding and aggregation of domains in p53. Chembiochem. 6, 1550–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Dawson, R., L. Muller, A. Dehner, C. Klein, H. Kessler, and J. Buchner. (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol. 332, 1131–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Baldwin, A.J., J. Christodoulou, P.D. Barker, C.M. Dobson, and G. Lippens. (2007) Contribution of rotational diffusion to pulsed field gradient diffusion measurements. J Chem Phys. 127, 114505.PubMedCrossRefGoogle Scholar
  58. 58.
    Waudby, C.A., T.P. Knowles, G.L. Devlin, J.N. Skepper, H. Ecroyd, J.A. Carver, M.E. Welland, J. Christodoulou, C.M. Dobson, and S. Meehan. (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J. 98, 843–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Berger, S. and S. Braun, 200 and more NMR experiments: A practical course. 3rd ed. 2004: Wiley-VCH.Google Scholar
  60. 60.
    Linderstrom-Lang, K., ed. Deuterium exchange and protein structure. Symposium on protein structure, ed. A. Neuberger. 1958, Methuen: LondonGoogle Scholar
  61. 61.
    Dempsey, C. (2001) Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog Nucl Magn Res Sp 39, 135–170.CrossRefGoogle Scholar
  62. 62.
    Bai, Y., J.S. Milne, L. Mayne, and S.W. Englander. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins. 17, 75–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Connelly, G.P., Y. Bai, M.F. Jeng, and S.W. Englander. (1993) Isotope effects in peptide group hydrogen exchange. Proteins. 17, 87–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang, Y. A server program for hydrogen exchange rate estimation (
  65. 65.
    Englander, S.W., T.R. Sosnick, J.J. Englander, and L. Mayne. (1996) Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 6, 18–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Huang, J.R., T.D. Craggs, J. Christodoulou, and S.E. Jackson. (2007) Stable intermediate states and high energy barriers in the unfolding of GFP. J Mol Biol. 370, 356–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Gal, M., P. Schanda, B. Brutscher, and L. Frydman. (2007) UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. J Am Chem Soc. 129, 1372–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Spera, S., M. Ikura, and A. Bax. (1991) Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1, 155–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Andrec, M. and J.H. Prestegard. (1997) Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements. J Biomol NMR. 9, 136–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Bockmann, A. and E. Guittet. (1997) Determination of fast proton exchange rates of biomolecules by NMR using water selective diffusion experiments. FEBS Lett. 418, 127–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Hwang, T.L., P.C. van Zijl, and S. Mori. (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J Biomol NMR. 11, 221–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Bollen, Y.J., M.B. Kamphuis, and C.P. van Mierlo. (2006) The folding energy landscape of apoflavodoxin is rugged: hydrogen exchange reveals nonproductive misfolded intermediates. Proc Natl Acad Sci U S A. 103, 4095–100.PubMedCrossRefGoogle Scholar
  73. 73.
    Carulla, N., G.L. Caddy, D.R. Hall, J. Zurdo, M. Gairi, M. Feliz, E. Giralt, C.V. Robinson, and C.M. Dobson. (2005) Molecular recycling within amyloid fibrils. Nature. 436, 554–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Carulla, N., M. Zhou, M. Arimon, M. Gairi, E. Giralt, C.V. Robinson, and C.M. Dobson. (2009) Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci U S A. 106, 7828–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Voss, J., L. Salwinski, H.R. Kaback, and W.L. Hubbell. (1995) A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proc Natl Acad Sci U S A. 92, 12295–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Lietzow, M.A., M. Jamin, H.J. Jane Dyson, and P.E. Wright. (2002) Mapping long-range contacts in a highly unfolded protein. J Mol Biol. 322, 655–62.PubMedCrossRefGoogle Scholar
  77. 77.
    Gillespie, J.R. and D. Shortle. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol. 268, 158–69.PubMedCrossRefGoogle Scholar
  78. 78.
    Gillespie, J.R. and D. Shortle. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 268, 170–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Dedmon, M.M., K. Lindorff-Larsen, J. Christodoulou, M. Vendruscolo, and C.M. Dobson. (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 127, 476–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Piotto, M., V. Saudek, and V. Sklenar. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 2, 661–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Grzesiek, S. and A. Bax. (1993) Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. J Biomol NMR. 3, 627–38.PubMedGoogle Scholar
  82. 82.
    Palmer, A.G., 3rd, J. Cavanagh, P.E. Wright, and M. Rance. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson. 93, 151–170.Google Scholar
  83. 83.
    Cavanagh, J., A.G. Palmer, 3rd, P.E. Wright, and M. Rance. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectoscopy. J Magn Reson. 91, 429–436.Google Scholar
  84. 84.
    Krezel, A. and W. Bal. (2004) A formula for correlating pKa values determined in D2O and H2O. J Inorg Biochem. 98, 161–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lisa D. Cabrita
  • Christopher A. Waudby
  • Christopher M. Dobson
  • John Christodoulou
    • 1
    • 2
  1. 1.Department of Structural and Molecular BiologyUniversity College LondonLondonUK
  2. 2.School of CrystallographyBirkbeck CollegeLondonUK

Personalised recommendations