Bioinformatics/Biostatistics: Microarray Analysis

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 823)

Abstract

The quantity and complexity of the molecular-level data generated in both research and clinical settings require the use of sophisticated, powerful computational interpretation techniques. It is for this reason that bioinformatic analysis of complex molecular profiling data has become a fundamental technology in the development of personalized medicine. This chapter provides a high-level overview of the field of bioinformatics and outlines several, classic bioinformatic approaches. The highlighted approaches can be aptly applied to nearly any sort of high-dimensional genomic, proteomic, or metabolomic experiments. Reviewed technologies in this chapter include traditional clustering analysis, the Gene Expression Dynamics Inspector (GEDI), GoMiner (GoMiner), Gene Set Enrichment Analysis (GSEA), and the Learner of Functional Enrichment (LeFE).

Key words

Bioinformatics Biostatistics Clustering Genomics Microarray 

References

  1. 1.
    Fan, J. B., Chee, M. S., and Gunderson, K. L. (2006) Highly parallel genomic assays. Nat Rev Genet 7 632–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Cho, E. K., Tchinda, J., Freeman, J. L., Chung, Y. J., Cai, W. W., et al. (2006) Array-based comparative genomic hybridization and copy number variation in cancer research. Cytogenet Genome Res 115 262–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Yuan, D. S., and Irizarry, R. A. (2006) High-resolution spatial normalization for microarrays containing embedded technical replicates. Bioinformatics 22 3054–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Weinstein, J. N., Myers, T. G., O’Connor, P. M., Friend, S. H., Fornace, A. J., Jr., et al. (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275 343–9.PubMedCrossRefGoogle Scholar
  5. 4.
    D’Haeseleer, P. (2005) How does gene expression clustering work? Nat Biotechnol 23 1499–501.PubMedCrossRefGoogle Scholar
  6. 5.
    Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53 325–28.Google Scholar
  7. 6.
    Pearson, K. (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2 559–72.Google Scholar
  8. 7.
    Eichler, G. S., Huang, S., and Ingber, D. E. (2003) Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles. Bioinformatics 19 2321–2.PubMedCrossRefGoogle Scholar
  9. 8.
    Ryan, M. C., Zeeberg, B. R., Caplen, N. J., Cleland, J. A., Kahn, A. B., et al. (2008) SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies. BMC Bioinformatics 9 313.PubMedCrossRefGoogle Scholar
  10. 9.
    Kanehisa, M. (1997) A database for post-genome analysis. Trends Genet 13 375–6.PubMedCrossRefGoogle Scholar
  11. 10.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25–9.Google Scholar
  12. 11.
    Zeeberg, B. R., Feng, W., Wang, G., Wang, M. D., Fojo, A. T., et al. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4 R28.PubMedCrossRefGoogle Scholar
  13. 12.
    Fisher, R. (1922) On the interpretation of X2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society 85 87–94.CrossRefGoogle Scholar
  14. 13.
    Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 15545–50.PubMedCrossRefGoogle Scholar
  15. 14.
    Eichler, G. S., Reimers, M., Kane, D., and Weinstein, J. N. (2007) The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data. Genome Biol 8 R187.PubMedCrossRefGoogle Scholar
  16. 15.
    de Hoon, M. J., Imoto, S., Nolan, J., and Miyano, S. (2004) Open source clustering software. Bioinformatics 20 1453–4.PubMedCrossRefGoogle Scholar
  17. 16.
    Ball, C. A., Awad, I. A., Demeter, J., Gollub, J., Hebert, J. M., et al. (2005) The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res 33 D580-2.PubMedCrossRefGoogle Scholar
  18. 17.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 14863–8.PubMedCrossRefGoogle Scholar
  19. 18.
    Magni, P., Ferrazzi, F., Sacchi, L., and Bellazzi, R. (2008) TimeClust: a clustering tool for gene expression time series. Bioinformatics 24 430–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.InnoCentive Inc.WalthamUSA

Personalised recommendations