Laser Capture Microdissection: ArcturusXT Infrared Capture and UV Cutting Methods

  • Rosa I. GallagherEmail author
  • Steven R. Blakely
  • Lance A. Liotta
  • Virginia Espina
Part of the Methods in Molecular Biology book series (MIMB, volume 823)


Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer–cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the ArcturusXT laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.

Key words

Cancer Laser capture microdissection Tissue Infrared Ultraviolet DNA Molecular profiling Protein RNA Tissue heterogeneity 


  1. 1.
    Wulfkuhle, J. D., Speer, R., Pierobon, M., Laird, J., Espina, V., Deng, J. et al. (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7, 150817.Google Scholar
  2. 2.
    Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X. et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67, 343140.Google Scholar
  3. 3.
    Petricoin, E. F., 3rd, Bichsel, V. E., Calvert, V. S., Espina, V., Winters, M., Young, L. et al. (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23, 361421.Google Scholar
  4. 4.
    Wulfkuhle, J. D., Sgroi, D. C., Krutzsch, H., McLean, K., McGarvey, K., Knowlton, M. et al. (2002) Proteomics of human breast ductal carcinoma in situ. Cancer Res 62, 67409.Google Scholar
  5. 5.
    Nakazono, M., Qiu, F., Borsuk, L. A., Schnable, P. S. (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 58396.Google Scholar
  6. 6.
    Ma, X. J., Dahiya, S., Richardson, E. A., Erlander, M., Sgroi, D. C. (2009) Gene expression profiling of tumor microenvironment during breast cancer progression. Breast Cancer Res 11, R7.Google Scholar
  7. 7.
    Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R. et al. (1996) Laser capture microdissection. Science 274, 9981001.Google Scholar
  8. 8.
    Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S. et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278, 1481,1483.Google Scholar
  9. 9.
    Angeles, G., Berrio-Sierra, J., Joseleau, J. P., Lorimier, P., Lefebvre, A., Ruel, K. (2006) Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis. Planta 224, 22832.Google Scholar
  10. 10.
    Gallup, J. M., Kawashima, K., Lucero, G., Ackermann, M. R. (2005) New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RT-PCR. Biol Proced Online 7, 7092.Google Scholar
  11. 11.
    Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., Gutstein, H. B. (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 6105.Google Scholar
  12. 12.
    Nakamura, N., Ruebel, K., Jin, L., Qian, X., Zhang, H., Lloyd, R. V. (2007) Laser capture microdissection for analysis of single cells. Methods Mol Med 132, 118.Google Scholar
  13. 13.
    VanMeter, A. J., Rodriguez, A. S., Bowman, E. D., Jen, J., Harris, C. C., Deng, J. et al. (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7, 190224.Google Scholar
  14. 14.
    Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H., Gordon, J. I. (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97, 126016.Google Scholar
  15. 15.
    Kennedy, J., Katsuta, H., Jung, M. H., Marselli, L., Goldfine, A. B., Balis, U. J. et al. (2010) Protective unfolded protein response in human pancreatic beta cells transplanted into mice. PLoS One 5, e11211.Google Scholar
  16. 16.
    Cha, S., Imielinski, M. B., Rejtar, T., Richardson, E. A., Thakur, D., Sgroi, D. C. et al. (2010) In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics 9, 252944.Google Scholar
  17. 17.
    Kolble, K. (2000) The LEICA microdissection system: design and applications. J Mol Med 78, B24-5.Google Scholar
  18. 18.
    Micke, P., Ostman, A., Lundeberg, J., Ponten, F. (2005) Laser-assisted cell microdissection using the PALM system. Methods Mol Biol 293, 15166.Google Scholar
  19. 19.
    Schutze, K., Posl, H., Lahr, G. (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand) 44, 73546.Google Scholar
  20. 20.
    Schermelleh, L., Thalhammer, S., Heckl, W., Posl, H., Cremer, T., Schutze, K. et al. (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27, 3627.Google Scholar
  21. 21.
    Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., Merritt, B. et al. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7, 19982018.Google Scholar
  22. 22.
    Botling, J., Edlund, K., Segersten, U., Tahmasebpoor, S., Engstrom, M., Sundstrom, M. et al. (2009) Impact of Thawing on RNA Integrity and Gene Expression Analysis in Fresh Frozen Tissue. Diagn Mol Pathol Google Scholar
  23. 23.
    Micke, P., Ohshima, M., Tahmasebpoor, S., Ren, Z. P., Ostman, A., Ponten, F. et al. (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86, 20211.Google Scholar
  24. 24.
    Xiang, C. C., Mezey, E., Chen, M., Key, S., Ma, L., Brownstein, M. J. (2004) Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Res 32, e185.Google Scholar
  25. 25.
    Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos, G. et al. (2006) Laser-capture microdissection. Nat Protoc 1, 586603.Google Scholar
  26. 26.
    ArcturusXT user guide: Flexible and Modular Laser Capture Microdissection, Rev. A. Molecular Devices Corporation, Sunnyvale, CA, 2007.Google Scholar
  27. 27.
    Iyer, E. P., Cox, D. N. (2010) Laser capture microdissection of Drosophila peripheral neurons. J Vis Exp 39, e2016, doi: 10.3791/2016. Google Scholar
  28. 28.
    Kiernan, J. (2008) Histological staining in one or two colours, in Histological and Histochemical Methods (ed.), Scion, Oxfordshire, pp. 146–147.Google Scholar
  29. 29.
    Buckanovich, R. J., Sasaroli, D., O’Brien-Jenkins, A., Botbyl, J., Conejo-Garcia, J. R., Benencia, F. et al. (2006) Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther 5, 63542.Google Scholar
  30. 30.
    Agar, N. S., Halliday, G. M., Barnetson, R. S., Jones, A. M. (2003) A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol 30, 26570.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rosa I. Gallagher
    • 1
    Email author
  • Steven R. Blakely
    • 2
  • Lance A. Liotta
    • 1
  • Virginia Espina
    • 1
  1. 1.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasUSA
  2. 2.Applied Biosystems/Life Technologies CorporationFoster CityUSA

Personalised recommendations