Study Origin of Germ Cells and Formation of New Primary Follicles in Adult Human and Rat Ovaries

  • Antonin Bukovsky
  • Satish K. Gupta
  • Irma Virant-Klun
  • Nirmala B. Upadhyaya
  • Pleas Copas
  • Stuart E. Van Meter
  • Marta Svetlikova
  • Maria E. Ayala
  • Roberto Dominguez
Part of the Methods in Molecular Biology™ book series (MIMB, volume 450)


The central thesis regarding the human ovaries is that, although primordial germ cells in embryonal ovaries are of extraovarian origin, those generated during the fetal period and in postnatal life are derived from the ovarian surface epithelium (OSE) bipotent cells. With the assistance of immune system-related cells, secondary germ cells and primitive granulosa cells originate from OSE stem cells in the fetal and adult human gonads. Fetal primary follicles are formed during the second trimester of intrauterine life, prior to the end of immune adaptation, possibly to be recognized as self-structures and renewed later. With the onset of menarche, a periodical oocyte and follicular renewal emerges to replace aging primary follicles and ensure that fresh eggs for healthy babies are always available during the prime reproductive period. The periodical follicular renewal ceases between 35 and 40 yr of age, and the remaining primary follicles are utilized during the premenopausal period until exhausted. However, the persisting oocytes accumulate genetic alterations and may become unsuitable for ovulation and fertilization. The human OSE stem cells preserve the character of embryonic stem cells, and they may produce distinct cell types, including new eggs in vitro, particularly when derived from patients with premature ovarian failure or aging and postmenopausal ovaries. Our observations also indicate that there are substantial differences in follicular renewal between adult human and rat ovaries. As part of this chapter, we present in detail protocols utilized to analyze oogenesis in humans and to study interspecies differences when compared to the ovaries of rat females.


Adulthood follicular renewal humans mammals oogenesis 



Acknowledgments We thank Drs. Bonnie S. Dunbar and Sarvamangala V. Prasad of the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, for kindly supplying additional ZP1,2,3 antibodies and Dr. A. Neil Barclay of the Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, who kindly provided mouse antirat Ia and LCA monoclonal antibodies. Peroxidase conjugate of swine antimouse IgG was kindly provided by Dr. Jana Peknicova of the Department of Biology and Biochemistry of Fertilization, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, and HLA-DR was kindly donated by Drs. Ivan Hilgert and Vaclav Horejsi of the Institute of Molecular Genetics, Academy of Sciences and Faculty of Sciences, Charles University, Prague, Czech Republic. Clone F15-42-01 to human Thy-1dp was kindly donated by Dr. Rosemarie Dalchau, Institute of Child Health, University of London. We also thank Drs. Helena Meden-Vrtovec, Tomaž Tomaževič, Jasna Šinkovec, and Andrej Vogler of the Department of Obstetrics and Gynecology, University of Ljubljana Medical Center, for stimulating suggestions and support, as well as excellent laparoscopic collection of OSE cells and ovarian biopsies by Dr. Andrej Vogler. This work was supported by the Physicians' Medical Education and Research Foundation award to A.B.


  1. 1.
    1. Allen, E. (1923) Ovogenesis during sexual maturity. Am. J. Anat. 31, 439–481.CrossRefGoogle Scholar
  2. 2.
    2. Pearl, R., and Schoppe, W. F. (1921) Studies on the physiology of reproduction in the domestic fowl. XVIII. Further observations on the anatomical basis of fecundity. J. Exp. Zool. 34, 101–1189.CrossRefGoogle Scholar
  3. 3.
    3. Zuckerman, S. (1951) The number of oocytes in the mature ovary. Recent Prog. Horm. Res. 6, 63–109.Google Scholar
  4. 4.
    4. Franchi, L. L., Mandl, A. M., and Zuckerman, S. (1962) The development of the ovary and the process of oogenesis, in The ovary (Zuckerman, S., ed.)—, Academic Press, London, pp. 1–88.Google Scholar
  5. 5.
    5. Zuckerman, S., and Baker, T. G. (1977) The development of the ovary and the process of oogenesis, in The ovary, Vol. 1 (Zuckerman, S., and Weir, B. J., eds.)—, Academic Press, New York, pp. 41–67.Google Scholar
  6. 6.
    6. Kingery, H. M. (1917) Oogenesis in the white mouse. J. Morphol. 30, 261–315.CrossRefGoogle Scholar
  7. 7.
    7. Evans, H. M., and Swezy, O. (1931) Ovogenesis and the normal follicular cycle in adult mammalia. Mem. Univ. Calif. 9, 119–224.Google Scholar
  8. 8.
    8. Gerard, P. (1920) Contribution a l'etude de l'ovarie des mammiferes. L'ovaire de Galago mossambicus(Young). Arch. Biol. 43, 357–391.Google Scholar
  9. 9.
    9. Rao, C. R. N. (1928) On the structure of the ovary and the ovarian ovum of Loris lydekkeri-anus Cabr. Q. J. Micr. Sci. 71, 57–73.Google Scholar
  10. 10.
    10. Zuckerman, S., and Weir, B. J. (1977) The ovary, 2nd ed., Vol. I, -Academic Press, New York.Google Scholar
  11. 11.
    11. Bukovsky, A., Keenan, J. A., Caudle, M. R., Wimalasena, J., Upadhyaya, N. B., and Van Meter, S. E. (1995) Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am. J. Reprod. Immunol. 33, 323–340.PubMedGoogle Scholar
  12. 12.
    12. Bukovsky, A., Caudle, M. R., Svetlikova, M., and Upadhyaya, N. B. (2004) Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod. Biol. Endocrinol. 2, 20. Available at: Scholar
  13. 13.
    13. Bukovsky, A., Ayala, M. E., Dominguez, R., Svetlikova, M., and Selleck-White, R. (2007). Bone marrow derived cells and alternative pathways of oogenesis in adult rodents. Cell Cycle 6(18), 2306–2309.CrossRefPubMedGoogle Scholar
  14. 14.
    14. Block, E. (1952). Quantitative morphological investigations of the follicular system in women. Variations at different ages. Acta Anat. (Basel). 14, 108–123.CrossRefGoogle Scholar
  15. 15.
    15. Kerr, J. B., Duckett, R., Myers, M., Britt, K. L., Mladenovska, T., and Findlay, J. K. (2006) Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction. 132, 95–109.CrossRefPubMedGoogle Scholar
  16. 16.
    16. Johnson, J., Canning, J., Kaneko, T., Pru, J. K., and Tilly, J. L. (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 428, 145–150.CrossRefPubMedGoogle Scholar
  17. 17.
    17. Gougeon, A., Echochard, R., and Thalabard, J. C. (1994) Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol. Reprod. 50, 653–663.CrossRefPubMedGoogle Scholar
  18. 18.
    18. Peters, H., and McNatty, K. P. (1980) The ovary. A correlation of structure and function in mammals, University of California Press, Berkeley, CA.Google Scholar
  19. 19.
    Waldeyer, W. (1870) Eierstock und Ei, Engelmann, Leipzig.Google Scholar
  20. 20.
    20. Simkins, C. S. (1928) Origin of the sex cells in man. Am. J. Anat. 41, 249–253.CrossRefGoogle Scholar
  21. 21.
    21. Brambell, F. W. R. (1927) The development and morphology of the gonads of the mouse. Part 1. The morphogenesis of the indifferent gonad and of the ovary. Proc. R. Soc. 101, 391–409.CrossRefGoogle Scholar
  22. 22.
    22. Motta, P. M., Van Blerkom, J., and Makabe, S. (1980) Changes in the surface morphology of ovarian “germinal” epithelium during the reproductive cycle and in some pathological conditions. J. Submicrosc. Cytol. 12, 407–425.Google Scholar
  23. 23.
    23. Bukovsky, A., Caudle, M. R., Svetlikova, M., Wimalasena, J., Ayala, M. E., and Dominguez, R. (2005) Oogenesis in adult mammals, including humans: a review. Endocrine. 26, 301–316.CrossRefPubMedGoogle Scholar
  24. 24.
    24. Bukovsky, A., Copas, P., and Virant-Klun, I. (2006) Potential new strategies for the treatment of ovarian infertility and degenerative diseases with autologous ovarian stem cells. Expert Opin. Biol. Ther. 6, 341–365.CrossRefPubMedGoogle Scholar
  25. 25.
    25. Williams, A. F., and Barclay, A. N. (1988) The immunoglobulin superfamily—domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405.PubMedGoogle Scholar
  26. 26.
    26. Bukovsky, A., Caudle, M. R., Keenan, J. A., et al. (2001) Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells. BMC Dev. Biol. 1, 11.CrossRefPubMedGoogle Scholar
  27. 27.
    27. Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K., and Leung, P. C. (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288.CrossRefPubMedGoogle Scholar
  28. 28.
    28. Faddy, M. J. (2000) Follicle dynamics during ovarian ageing. Mol. Cell Endocrinol. 163, 43.CrossRefPubMedGoogle Scholar
  29. 29.
    29. Bukovsky, A., Caudle, M. R., Keenan, J. A., Wimalasena, J., Foster, J. S., and Van Meter, S. E. (1995) Quantitative evaluation of the cell cycle-related retinoblastoma protein and localization of Thy-1 differentiation protein and macrophages during follicular development and atresia, and in human corpora lutea. Biol. Reprod. 52, 776–792.CrossRefPubMedGoogle Scholar
  30. 30.
    30. Bukovsky, A. (2006) Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc. Res. Tech. 69, 482–500.CrossRefPubMedGoogle Scholar
  31. 31.
    31. Czernobilsky, B., Moll, R., Levy, R., and Franke, W. W. (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur. J. Cell Biol. 37, 175–190.PubMedGoogle Scholar
  32. 32.
    32. Johnson, J., Bagley, J., Skaznik-Wikiel, M., et al. (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 122, 303–315.CrossRefPubMedGoogle Scholar
  33. 33.
    33. Boja, E. S., Hoodbhoy, T., Garfield, M., and Fales, H. M. (2005) Structural conservation of mouse and rat zona pellucida glycoproteins. Probing the native rat zona pellucida proteome by mass spectrometry. Biochemistry. 44, 16445–16460.CrossRefPubMedGoogle Scholar
  34. 34.
    34. Erickson, G. F., and Shimasaki, S. (2003) The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 9.CrossRefPubMedGoogle Scholar
  35. 35.
    35. Ingram, D. L. (1962) Atresia, in The ovary (Zuckerman, S., ed.), Academic Press, London, pp. 247–273.Google Scholar
  36. 36.
    36. Bukovsky, A., Svetlikova, M., and Caudle, M. R. (2005) Oogenesis in cultures derived from adult human ovaries. Reprod. Biol. Endocrinol. 3, 17.CrossRefPubMedGoogle Scholar
  37. 37.
    37. Bukovsky, A., and Virant-Klun, I. (2006) Adult stem cells in the human ovary, in Stem cells in reproductive medicine: basic science and therapeutic potential (Simon, C., and Pellicer, A., eds,), Informa Healthcare, London, pp. 53–70.Google Scholar
  38. 38.
    38. Corrigan, E. C., Raygada, M. J., Vanderhoof, V. H., and Nelson, L. M. (2005) A woman with spontaneous premature ovarian failure gives birth to a child with fragile X syndrome. Fertil. Steril. 84, 1508.CrossRefPubMedGoogle Scholar
  39. 39.
    39. Rebar, R. W. (2000) Premature ovarian failure, in Menopause biology and pathobiology (Lobo, R. A., Kesley, J., and Marcus, R., eds,), Academic Press, San Diego, CA, pp. 135–146.Google Scholar
  40. 40.
    40. Gersak, K., Meden-Vrtovec, H., and Peterlin, B. (2003) Fragile X premutation in women with sporadic premature ovarian failure in Slovenia. Hum. Reprod. 18, 1637–1640.CrossRefPubMedGoogle Scholar
  41. 41.
    41. Sehgal, S., Gupta, S. K., and Bhatnagar, P. (1989) Long-term effects of immunization with porcine zona pellucida on rabbit ovaries. Pathology. 21, 105–110.CrossRefPubMedGoogle Scholar
  42. 42.
    42. Miller, C. C., Fayrer-Hosken, R. A., Timmons, T. M., Lee, V. H., Caudle, A. B., and Dunbar, B. S. (1992) Characterization of equine zona pellucida glycoproteins by polyacrylamide gel electrophoresis and immunological techniques. J. Reprod. Fertil. 96, 815–825.CrossRefPubMedGoogle Scholar
  43. 43.
    43. Horejsi, V., Hilgert, I., Kristofova, H., Bazil, V., Bukovsky, A., and Kulhankova, J. (1986) Monoclonal antibodies against human leucocyte antigens. I. Antibodies against beta-2-microglobulin, immunoglobulin kappa light chains, HLA-DR-like antigens, T8 antigen, T1 antigen, a monocyte antigen, and a pan-leucocyte antigen. Folia Biol. (Praha). 32, 12–25.Google Scholar
  44. 44.
    44. McKenzie, J. L., and Fabre, J. W. (1981) Human Thy-1: unusual localization and possible functional significance in lymphoid tissues. J. Immunol. 126, 843–850.PubMedGoogle Scholar
  45. 45.
    45. Yurewicz, E. C., Sacco, A. G., and Subramanian, M. G. (1987) Structural characterization of the Mr = 55,000 antigen (ZP3) of porcine oocyte zona pellucida. Purification and characterization of alpha- and beta-glycoproteins following digestion of lactosaminoglycan with endo-beta-galactosidase. J. Biol Chem. 262, 564–571.PubMedGoogle Scholar
  46. 46.
    46. Govind, C. K., Srivastava, N., and Gupta, S. K. (2002) Evaluation of the immunocontraceptive potential of Escherichia coli expressed recombinant non-human primate zona pellucida glyco-proteins in homologous animal model. Vaccine. 21, 78–88.CrossRefPubMedGoogle Scholar
  47. 47.
    47. Govind, C. K., Hasegawa, A., Koyama, K., and Gupta, S. K. (2000) Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glyco-protein-B by monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol. Reprod. 62, 67–75.CrossRefPubMedGoogle Scholar
  48. 48.
    48. Virant-Klun, I., Tomazevic, T., Bacer-Kermavner, L., Mivsek, J., Valentincic-Gruden, B., and Meden-Vrtovec, H. (2003) Successful freezing and thawing of blastocysts cultured in sequential media using a modified method. Fertil. Steril. 79, 1428–1433.CrossRefPubMedGoogle Scholar
  49. 49.
    49. Sternberger, L. A., and Joseph, S. A. (1979) The unlabelled antibody method. Contrasting color staining of paired hormones without antibody removal. J. Histochem. Cytochem. 27, 1424–1429.PubMedGoogle Scholar
  50. 50.
    50. Hoek, A., van Kasteren, Y. , de Haan-Meulman, M., Schoemaker, J., and Drexhage, H. A. (1993) Dysfunction of monocytes and dendritic cells in patients with premature ovarian failure. Am. J. Reprod. Immunol. 30, 207–217.PubMedGoogle Scholar
  51. 51.
    51. Hoek, A., van Kasteren, Y. , de Haan-Meulman, M., Hooijkaas, H., Schoemaker, J., and Drexhage, H. A. (1995) Analysis of peripheral blood lymphocyte subsets, NK cells, and delayed type hypersensitivity skin test in patients with premature ovarian failure. Am. J. Reprod. Immunol. 33, 495–502.PubMedGoogle Scholar
  52. 52.
    52. Bousfield, G. R., Butnev, V. Y. , Gotschall, R. R., Baker, V. L., and Moore, W. T. (1996) Structural features of mammalian gonadotropins. Mol. Cell Endocrinol. 125, 3–19.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Antonin Bukovsky
    • 1
  • Satish K. Gupta
    • 2
  • Irma Virant-Klun
    • 3
  • Nirmala B. Upadhyaya
    • 4
  • Pleas Copas
    • 4
  • Stuart E. Van Meter
    • 5
  • Marta Svetlikova
    • 1
  • Maria E. Ayala
    • 6
  • Roberto Dominguez
    • 6
  1. 1.Laboratory of Development, Differentiation and Cancer, Department of Obstetrics and GynecologyThe University of Tennessee Graduate School of MedicineKnoxvilleUSA
  2. 2.Gamete Antigen LaboratoryNational Institute of ImmunologyNew DelhiIndia
  3. 3.Department of Obstetrics and GynecologyUniversity Medical CentreLjubljanaSlovenia
  4. 4.Department of Obstetrics and GynecologyThe University of Tennessee Graduate School of MedicineKnoxvilleUSA
  5. 5.Department of PathologyThe University of Tennessee Graduate School of MedicineKnoxvilleUSA
  6. 6.Unidad de Investigacion en Biologia de la Reproduccion, FES ZaragozaUNAMMexico

Personalised recommendations