Bioinformatics Methods in Clinical Research pp 67-79

Part of the Methods in Molecular Biology book series (MIMB, volume 593) | Cite as

R Classes and Methods for SNP Array Data

  • Robert B. Scharpf
  • Ingo Ruczinski
Protocol

Abstract

The Bioconductor project is an “open source and open development software project for the analysis and comprehension of genomic data” (1), primarily based on the R programming language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers and serve several key roles to the broader community of Bioconductor software developers and users. In particular, Biobase introduces an S4 class, the eSet, for high-dimensional assay data. Encapsulating the assay data as well as meta-data on the samples, features, and experiment in the eSet class definition ensures propagation of the relevant sample and feature meta-data throughout an analysis. Extending the eSet class promotes code reuse through inheritance as well as interoperability with other R packages and is less error-prone. Recently proposed class definitions for high-throughput SNP arrays extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase class definitions through a working example of one implementation of classes for the analysis of high-throughput SNP arrays.

Key words

SNP array copy number genotype S4 classes 

References

  1. 1.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5(10):R80.CrossRefPubMedGoogle Scholar
  2. 2.
    Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S, Bartell D, Huang J, Chiles R, Yang G, Mei Shen M, Kulp D, Kennedy GC, Mei R, Jones KW, Cawley S. (2005) Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics 21(9):1958–1963.CrossRefPubMedGoogle Scholar
  3. 3.
    Rabbee N, Speed TP. (2006) A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 22(1):7–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Affymetrix. (2006) BRLMM: an improved genotype calling method for the genechip human mapping 500 k array set. Tech. rep., Affymetrix, Inc. White paper, Santa Clara, CA.Google Scholar
  5. 5.
    Carvalho B, Bengtsson H, Speed TP, Irizarry RA. (2007) Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 8(2):485–499.CrossRefPubMedGoogle Scholar
  6. 6.
    Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK, Kennedy GC, Ogawa S. (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65(14):6071–6079.CrossRefPubMedGoogle Scholar
  7. 7.
    Huang J, Wei W, Chen J, Zhang J, Liu G, Di X, Mei R, Ishikawa S, Aburatani H, Jones KW, Shapero MH. (2006) CARAT: a novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays. BMC Bioinformatics 7:83.CrossRefPubMedGoogle Scholar
  8. 8.
    Laframboise T, Harrington D, Weir BA. (2006) PLASQ: a generalized linear model-based procedure to determine allelic dosage in cancer cells from SNP array data. Biostatistics 8(2):323–336.CrossRefPubMedGoogle Scholar
  9. 9.
    Carter NP. (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39(7 Suppl):S16–S21.CrossRefPubMedGoogle Scholar
  10. 10.
    Chambers JM. (1998) Programming with Data: A Guide to the S Language, Springer-Verlag, New York.Google Scholar
  11. 11.
    Scharpf RB, Ting JC, Pevsner J, Ruczinski I. (2007) SNPchip: R classes and methods for SNP array data. Bioinformatics 23(5): 627–628.CrossRefPubMedGoogle Scholar
  12. 12.
    Scharpf RB, Parmigiani G, Pevsner J, Ruczinski I. (2008) Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP arrays. Ann Appl Stat 2(2):687–713.CrossRefPubMedGoogle Scholar
  13. 13.
    Leisch F. (2003) Sweave and beyond: Computations on text documents. In Kurt Hornik, Friedrich Leisch, and Achim Zeileis (eds). Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 2003.Sarkar D. (2008) Lattice: Multivariate Data Visualization with R. Springer, New York.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robert B. Scharpf
    • 1
  • Ingo Ruczinski
    • 1
  1. 1.BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations