Bioinformatics Methods in Clinical Research pp 341-382

Part of the Methods in Molecular Biology book series (MIMB, volume 593)

Analysis of Biological Processes and Diseases Using Text Mining Approaches

  • Martin Krallinger
  • Florian Leitner
  • Alfonso Valencia

Abstract

A number of biomedical text mining systems have been developed to extract biologically relevant information directly from the literature, complementing bioinformatics methods in the analysis of experimentally generated data. We provide a short overview of the general characteristics of natural language data, existing biomedical literature databases, and lexical resources relevant in the context of biomedical text mining. A selected number of practically useful systems are introduced together with the type of user queries supported and the results they generate. The extraction of biological relationships, such as protein–protein interactions as well as metabolic and signaling pathways using information extraction systems, will be discussed through example cases of cancer-relevant proteins. Basic strategies for detecting associations of genes to diseases together with literature mining of mutations, SNPs, and epigenetic information (methylation) are described. We provide an overview of disease-centric and gene-centric literature mining methods for linking genes to phenotypic and genotypic aspects. Moreover, we discuss recent efforts for finding biomarkers through text mining and for gene list analysis and prioritization. Some relevant issues for implementing a customized biomedical text mining system will be pointed out. To demonstrate the usefulness of literature mining for the molecular oncology domain, we implemented two cancer-related applications. The first tool consists of a literature mining system for retrieving human mutations together with supporting articles. Specific gene mutations are linked to a set of predefined cancer types. The second application consists of a text categorization system supporting breast cancer-specific literature search and document-based breast cancer gene ranking. Future trends in text mining emphasize the importance of community efforts such as the BioCreative challenge for the development and integration of multiple systems into a common platform provided by the BioCreative Metaserver.

Key words

Text mining information extraction natural language processing pathways cancer diseases gene raking document classification biomarkers epigenetics 

References

  1. 1.
    Krallinger M, Valencia A, Hirschman L. (2008) Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8.CrossRefPubMedGoogle Scholar
  2. 2.
    Braconi Quintaje S, Orchard S. (2008) The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: one small step in manual annotation, one giant leap for full comprehension of genomes. Mol Cell Proteomics 7(8): 1409–1419.CrossRefPubMedGoogle Scholar
  3. 3.
    Baumgartner WA, Cohen KB, Fox LM, Acquaah-Mensah G, Hunter L. (2007) Manual curation is not sufficient for annotation of genomic databases. Bioinformatics 23(13):i41–i48.CrossRefPubMedGoogle Scholar
  4. 4.
    Leitner F, Valencia A. (2008) A text-mining perspective on the requirements for electronically annotated abstracts. FEBS Lett 582(8):1178–1181.CrossRefPubMedGoogle Scholar
  5. 5.
    Ceol A, Chatr-Aryamontri A, Licata L, Cesareni G. (2008) Linking entries in protein interaction database to structured text: the FEBS Letters experiment. FEBS Lett 582(8):1171–1177.CrossRefPubMedGoogle Scholar
  6. 6.
    Aerts S, Haeussler M, van Vooren S, Griffith OL, Hulpiau P, Jones SJ, Montgomery SB, Bergman CM. Open Regulatory Annotation Consortium. (2008) Text-mining assisted regulatory annotation. Genome Biol 9(2):R31.CrossRefPubMedGoogle Scholar
  7. 7.
    Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R. (2007) PepBank – a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 8:280.CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann R, Valencia A. (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21(Suppl 2):ii252–ii258.CrossRefPubMedGoogle Scholar
  9. 9.
    Manning CD, Schütze H. (2003) Foundations of Statistical Natural Language Processing, MIT Press, Cambridge, MA.Google Scholar
  10. 10.
    Jiang J, Zhai CX. (2007) An empirical study of tokenization strategies for biomedical information retrieval. Inform Retr 10:341–363.CrossRefGoogle Scholar
  11. 11.
    Tomanek K, Wermter J, Hahn U. (2007) Sentence and token splitting based on conditional random fields. Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics, pp. 49–57.Google Scholar
  12. 12.
    Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. (2008) Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol 9(Suppl 2):S4.CrossRefPubMedGoogle Scholar
  13. 13.
    Porter MF. (1980) An algorithm for suffix stripping. Program 14(3):130–137.Google Scholar
  14. 14.
    Crim J, McDonald R, Pereira F. (2005) Automatically annotating documents with normalized gene lists. BMC Bioinformatics 6(Suppl 1):S13.CrossRefPubMedGoogle Scholar
  15. 15.
    Settles B. (2005) ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics 21(14):3191–3192.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang H, Huang M, Ding S, Zhu X. (2008) Exploiting and integrating rich features for biological literature classification. BMC Bioinformatics 9(Suppl 3):S4.CrossRefGoogle Scholar
  17. 17.
    Hakenberg J, Plake C, Leaman R, Schroeder M, Gonzalez G. (2008) Inter-species normalization of gene mentions with GNAT. Bioinformatics 24(16):i126–i132.CrossRefPubMedGoogle Scholar
  18. 18.
    Smith L, Rindflesch T, Wilbur WJ. (2004) MedPost: a part-of-speech tagger for bioMedical text. Bioinformatics 20(14):2320–2321.CrossRefPubMedGoogle Scholar
  19. 19.
    Pyysalo S, Salakoski T, Aubin S, Nazarenko A. (2006) Lexical adaptation of link grammar to the biomedical sublanguage: a comparative evaluation of three approaches. BMC Bioinformatics 7(Suppl 3):S2.CrossRefPubMedGoogle Scholar
  20. 20.
    Rinaldi F, Schneider G, Kaljurand K, Hess M, Andronis C, Konstandi O, Persidis A. (2007) Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach. Artif Intell Med 39(2):127–136.CrossRefPubMedGoogle Scholar
  21. 21.
    Bethard S, Lu Z, Martin JH, Hunter L. (2008) Semantic role labeling for protein transport predicates. BMC Bioinformatics 9:277.CrossRefPubMedGoogle Scholar
  22. 22.
    Koike A, Niwa Y, Takagi T. (2005) Automatic extraction of gene/protein biological functions from biomedical text. Bioinformatics 21(7):1227–1236.CrossRefPubMedGoogle Scholar
  23. 23.
    Rodríguez-Penagos C, Salgado H, Martínez-Flores I, Collado-Vides J. (2007) Automatic reconstruction of a bacterial regulatory network using Natural Language Processing. BMC Bioinformatics 8:293.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamamoto Y, Takagi T. (2007) Biomedical knowledge navigation by literature clustering. J Biomed Inform 40(2):114–130.CrossRefPubMedGoogle Scholar
  25. 25.
    Krauthammer M, Nenadic G. (2004) Term identification in the biomedical literature. J Biomed Inform 37(6):512–526.CrossRefPubMedGoogle Scholar
  26. 26.
    Okazaki N, Ananiadou S. (2006) Building an abbreviation dictionary using a term recognition approach. Bioinformatics 22(24):3089–3095.CrossRefPubMedGoogle Scholar
  27. 27.
    Leitner F, et al. (2008) Introducing meta-services for biomedical information extraction. Genome Biol 9(Suppl 2):S6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim JJ, Pezik P, Rebholz-Schuhmann D. (2008) MedEvi: retrieving textual evidence of relations between biomedical concepts from Medline. Bioinformatics 24(11): 1410–1412.CrossRefPubMedGoogle Scholar
  29. 29.
    Tomanek K, Wermter J, Hahn U. (2007) An approach to text corpus construction which cuts annotation costs and maintains reusability of annotated data. Proceedings of EMNLP-CoNLL 2007, pp. 486–495.Google Scholar
  30. 30.
  31. 31.
    Natarajan J, Ganapathy J. (2007) Functional gene clustering via gene annotation sentences, MeSH and GO keywords from biomedical literature. Bioinformation 2(5):185–193.PubMedGoogle Scholar
  32. 32.
    Camon E, et al. (2004) The Gene Ontology Annotation (GOA) database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32:262–266.CrossRefGoogle Scholar
  33. 33.
    Siadaty MS, Shu J, Knaus WA. (2007) Relemed: sentence-level search engine with relevance score for the MEDLINE database of biomedical articles. BMC Med Inform Decis Mak 7:1.CrossRefPubMedGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
    Eaton AD. (2006) HubMed: a web-based biomedical literature search interface. Nucleic Acids Res 34(Web server issue):W745–W747.CrossRefPubMedGoogle Scholar
  37. 37.
    Lewis J, Ossowski S, Hicks J, Errami M, Garner HR. (2006) Text similarity: an alternative way to search MEDLINE. Bioinformatics 22(18):2298–2304.CrossRefPubMedGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
    Hearst MA, Divoli A, Guturu H, Ksikes A, Nakov P, Wooldridge MA, Ye J. (2007) BioText Search Engine: beyond abstract search. Bioinformatics 23(16):2196–2197.CrossRefPubMedGoogle Scholar
  41. 41.
    Doms A, Schroeder M. (2005) GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Res 33(Web server issue):W783–W786.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith B, et al. (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251–1255.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsuruoka Y, McNaught J, Ananiadou S. (2008) Normalizing biomedical terms by minimizing ambiguity and variability. BMC Bioinformatics 9(Suppl 3):S2.Google Scholar
  44. 44.
  45. 45.
    Frijters R, Heupers B, van Beek P, Bouwhuis M, van Schaik R, de Vlieg J, Polman J, Alkema W. (2008) CoPub: a literature-based keyword enrichment tool for microarray data analysis. Nucleic Acids Res 36(Web server issue):W406–W410.CrossRefPubMedGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    Fink JL, Kushch S, Williams PR, Bourne PE. (2008) BioLit: integrating biological literature with databases. Nucleic Acids Res 36(Web server issue):W385–W389.CrossRefPubMedGoogle Scholar
  49. 49.
    Rebholz-Schuhmann D, Arregui M, Gaudan S, Kirsch H, Jimeno A. (2008) Text processing through web services: calling Whatizit. Bioinformatics 24(2):296–298.CrossRefPubMedGoogle Scholar
  50. 50.
    Lussier Y, Borlawsky T, Rappaport D, Liu Y, Friedman C. (2006) PhenoGO: assigning phenotypic context to gene ontology annotations with natural language processing. Pacific Symposium on Biocomputing, pp. 64–75.Google Scholar
  51. 51.
    Blaschke C, Leon EA, Krallinger M, Valencia A. (2005) Evaluation of BioCreAtIvE assessment of task 2. BMC Bioinformatics 6(Suppl 1):S16.CrossRefPubMedGoogle Scholar
  52. 52.
    Oliveros JC, Blaschke C, Herrero J, Dopazo J, Valencia A. (2000) Expression profiles and biological function. Genome Inform Ser Workshop Genome Inform 11:106–117.PubMedGoogle Scholar
  53. 53.
    Raychaudhuri S, Chang JT, Imam F, Altman RB. (2003) The computational analysis of scientific literature to define and recognize gene expression clusters. Nucleic Acids Res 31(15):4553–4560.CrossRefPubMedGoogle Scholar
  54. 54.
    Resnik P. (1995) Using information content to evaluate semantic similarity in a taxonomy. Proceedings of the International Joint Conference on Artificial Intelligence, pp. 448–453.Google Scholar
  55. 55.
    Lord PW, Stevens RD, Brass A, Goble CA. (2003) Semantic similarity measures as tools for exploring the gene ontology. Pacific Symposium on Biocomputing, pp. 601–612.Google Scholar
  56. 56.
    Fellbaum C, Hahn U, Smith B. (2006) Towards new information resources for public health – from WordNet to MedicalWordNet. J Biomed Inform 39(3):321–332.CrossRefPubMedGoogle Scholar
  57. 57.
    del Pozo A, Pazos F, Valencia A. (2008) Defining functional distances over gene ontology. BMC Bioinformatics 9:50.CrossRefPubMedGoogle Scholar
  58. 58.
    Johnson HL, Cohen KB, Baumgartner WA, Lu Z, Bada M, Kester T, Kim H, Hunter L. (2006) Evaluation of lexical methods for detecting relationships between concepts from multiple ontologies. Pacific Symposium on Biocomputing, pp. 28–39.Google Scholar
  59. 59.
    Donaldson I, Martin J, de Bruijn B, Wolting C, Lay V, Tuekam B, Zhang S, Baskin B, Bader GD, Michalickova K, Pawson T, Hogue CW. (2003) PreBIND and Textomy – mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics 4:11.CrossRefPubMedGoogle Scholar
  60. 60.
    Blaschke C, Valencia A. (2001) The potential use of SUISEKI as a protein interaction discovery tool. Genome Inform 12:123–134.PubMedGoogle Scholar
  61. 61.
    Krallinger M, Malik R, Valencia A. (2006) Text mining and protein annotations: the construction and use of protein description sentences. Genome Inform 17(2): 121–130.PubMedGoogle Scholar
  62. 62.
    Jenssen TK, Laegreid A, Komorowski J, Hovig E. (2001) A literature network of human genes for high-throughput analysis of gene expression. Nat Genet 28(1):21–28.CrossRefPubMedGoogle Scholar
  63. 63.
    Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P. (2007) EBIMed – text crunching to gather facts for proteins from Medline. Bioinformatics 23(2):e237–e244.CrossRefPubMedGoogle Scholar
  64. 64.
  65. 65.
    Chen H, Sharp BM. (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147.CrossRefPubMedGoogle Scholar
  66. 66.
    Rinaldi F, Kappeler T, Kaljurand K, Schneider G, Klenner M, Clematide S, Hess M, von Allmen JM, Parisot P, Romacker M, Vachon T. (2008) OntoGene in BioCreative II. Genome Biol 9(Suppl 2):S13.CrossRefPubMedGoogle Scholar
  67. 67.
    Baumgartner WA, Lu Z, Johnson HL, Caporaso JG, Paquette J, Lindemann A, White EK, Medvedeva O, Cohen KB, Hunter L. (2008) Concept recognition for extracting protein interaction relations from biomedical text. Genome Biol 9(Suppl 2):S9.CrossRefPubMedGoogle Scholar
  68. 68.
    Narayanaswamy M, Ravikumar KE, Vijay-Shanker K. (2005) Beyond the clause: extraction of phosphorylation information from Medline abstracts. Bioinformatics 21(Suppl 1):i319–i327.CrossRefPubMedGoogle Scholar
  69. 69.
    Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, Valencia A. (2005) Text mining for metabolic pathways, signaling cascades, and protein networks. Sci STKE 283:pe21.Google Scholar
  70. 70.
    Oda K, Kim JD, Ohta T, Okanohara D, Matsuzaki T, Tateisi Y, Tsujii J. (2008) New challenges for text mining: mapping between text and manually curated pathways. BMC Bioinformatics 9(Suppl 3):S5.CrossRefPubMedGoogle Scholar
  71. 71.
    Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A. (2001) GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17(Suppl 1):S74–S82.PubMedGoogle Scholar
  72. 72.
    Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I. (2006) Automatic pathway building in biological association networks. BMC Bioinformatics 7:171.CrossRefPubMedGoogle Scholar
  73. 73.
    Koike A, Kobayashi Y, Takagi T. (2003) Kinase pathway database: an integrated protein-kinase and NLP-based protein-interaction resource. Genome Res 13(6A):1231–1243.CrossRefPubMedGoogle Scholar
  74. 74.
    Ding J, Viswanathan K, Berleant D, Hughes L, Wurtele ES, Ashlock D, Dickerson JA, Fulmer A, Schnable PS. (2005) Using the biological taxonomy to access biological literature with PathBinderH. Bioinformatics 21(10):2560–2562.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee H, Yi GS, Park JC. (2008) E3Miner: a text mining tool for ubiquitin-protein ligases. Nucleic Acids Res 36(Web server issue):W416–W422.CrossRefPubMedGoogle Scholar
  76. 76.
    Al-Shahrour F, Carbonell J, Minguez P, Goetz S, Conesa A, Tárraga J, Medina I, Alloza E, Montaner D, Dopazo J. (2008) Babelomics: advanced functional profiling of transcriptomics, proteomics and genomics experiments. Nucleic Acids Res 36(Web server issue):W341–W346.CrossRefPubMedGoogle Scholar
  77. 77.
    Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36(Database issue):D684–D688.PubMedGoogle Scholar
  78. 78.
    Chang A, Scheer M, Grote A, Schomburg I, Schomburg D. (2008) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37(Database issue):D588–D592.Google Scholar
  79. 79.
    Spasić I, Schober D, Sansone SA, Rebholz-Schuhmann D, Kell DB, Paton NW. (2008) Facilitating the development of controlled vocabularies for metabolomics technologies with text mining. BMC Bioinformatics 9(Suppl 5):S5.CrossRefPubMedGoogle Scholar
  80. 80.
    Jin Y, McDonald RT, Lerman K, Mandel MA, Carroll S, Liberman MY, Pereira FC, Winters RS, White PS. (2006) Automated recognition of malignancy mentions in biomedical literature. BMC Bioinformatics 7:492.CrossRefPubMedGoogle Scholar
  81. 81.
    Chun HW, Tsuruoka Y, Kim JD, Shiba R, Nagata N, Hishiki T, Tsujii J. (2006) Extraction of gene-disease relations from Medline using domain dictionaries and machine learning. Pacific Symposium in Biocomputing, pp. 4–15.Google Scholar
  82. 82.
    Pospisil P, Iyer LK, Adelstein SJ, Kassis AI. (2006) A combined approach to data mining of textual and structured data to identify cancer-related targets. BMC Bioinformatics 7:354.CrossRefPubMedGoogle Scholar
  83. 83.
    Natarajan J, Berrar D, Dubitzky W, Hack C, Zhang Y, DeSesa C, Van Brocklyn JR, Bremer EG. (2006) Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line. BMC Bioinformatics 7:373.CrossRefPubMedGoogle Scholar
  84. 84.
    Li X, Chen H, Huang Z, Su H, Martinez JD. (2007) Global mapping of gene/protein interactions in PubMed abstracts: a framework and an experiment with P53 interactions. J Biomed Inform 40(5): 453–464.CrossRefPubMedGoogle Scholar
  85. 85.
    McDonald DM, Chen H, Su H, Marshall BB. (2004) Extracting gene pathway relations using a hybrid grammar: the Arizona Relation Parser. Bioinformatics 20(18):3370–3378.CrossRefPubMedGoogle Scholar
  86. 86.
    Gonzalez G, Uribe JC, Brophy C, Baral C. (2007) Mining gene-disease relationships from biomedical literature: weighting protein-protein interactions and connectivity measures. Pacific Symposium of Biocomputing, pp. 28–39.Google Scholar
  87. 87.
    Croning MD, Marshall MC, McLaren P, Armstrong JD, Grant SG. (2008) G2Cdb: the Genes to Cognition database. Nucleic Acids Res 37(Database issue):D846–D851.Google Scholar
  88. 88.
    Collier N, Doan S, Kawazoe A, Goodwin RM, Conway M, Tateno Y, Ngo QH, Dien D, Kawtrakul A, Takeuchi K, Shigematsu M, Taniguchi K. (2008) BioCaster: detecting public health rumors with a web-based text mining system. Bioinformatics 24(24):2940–2941.Google Scholar
  89. 89.
    Srinivasan P, Libbus B. (2004) Mining MEDLINE for implicit links between dietary substances and diseases. Bioinformatics 20(Suppl 1):i290–i296.CrossRefPubMedGoogle Scholar
  90. 90.
    Tremblay K, Lemire M, Potvin C, Tremblay A, Hunninghake GM, Raby BA, Hudson TJ, Perez-Iratxeta C, Andrade-Navarro MA, Laprise C. (2008) Genes to diseases (G2D) computational method to identify asthma candidate. PLoS ONE 3(8):e2907.CrossRefPubMedGoogle Scholar
  91. 91.
    Tsuruoka Y, Tsujii J, Ananiadou S. (2008) FACTA: a text search engine for finding associated biomedical concepts. Bioinformatics 24(21):2559–2560.CrossRefPubMedGoogle Scholar
  92. 92.
    Müller H, Mancuso F. (2008) Identification and analysis of co-occurrence networks with NetCutter. PLoS ONE 3(9):e3178.CrossRefPubMedGoogle Scholar
  93. 93.
    Jelier R, Schuemie MJ, Veldhoven A, Dorssers LC, Jenster G, Kors JA. (2008) Anni 2.0: a multipurpose text-mining tool for the life sciences. Genome Biol 9(6):R96.CrossRefPubMedGoogle Scholar
  94. 94.
    Lin SM, McConnell P, Johnson KF, Shoemaker J. (2004) MedlineR: an open source library in R for Medline literature data mining. Bioinformatics 20(18):3659–3661.CrossRefPubMedGoogle Scholar
  95. 95.
    Cases I, Pisano DG, Andres E, Carro A, Fernández JM, Gómez-López G, Rodriguez JM, Vera JF, Valencia A, Rojas AM. (2007) CARGO: a web portal to integrate customized biological information. Nucleic Acids Res 35:W16–W20.CrossRefPubMedGoogle Scholar
  96. 96.
    Xuan W, Wang P, Watson SJ, Meng F. (2007) Medline search engine for finding genetic markers with biological significance. Bioinformatics 23(18):2477–2484.CrossRefPubMedGoogle Scholar
  97. 97.
    Furlong LI, Dach H, Hofmann-Apitius M, Sanz F. (2008) OSIRISv1.2: a named entity recognition system for sequence variants of genes in biomedical literature. BMC Bioinformatics 9:84.CrossRefPubMedGoogle Scholar
  98. 98.
    Caporaso JG, Baumgartner WA, Randolph DA, Cohen KB, Hunter L. (2007) MutationFinder: a high-performance system for extracting point mutation mentions from text. Bioinformatics 23(14):1862–1865.CrossRefPubMedGoogle Scholar
  99. 99.
    McDonald RT, Winters RS, Mandel M, Jin Y, White PS, Pereira F. (2004) An entity tagger for recognizing acquired genomic variations in cancer literature. Bioinformatics 20(17):3249–3251.CrossRefPubMedGoogle Scholar
  100. 100.
    Saunders RE, Perkins SJ. (2008) CoagMDB: a database analysis of missense mutations within four conserved domains in five vitamin K-dependent coagulation serine proteases using a text-mining tool. Hum Mutat 29(3):333–344.CrossRefPubMedGoogle Scholar
  101. 101.
    Bajdik CD, Kuo B, Rusaw S, Jones S, Brooks-Wilson A. (2005) CGMIM: automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes. BMC Bioinformatics 6:78.CrossRefPubMedGoogle Scholar
  102. 102.
    Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. (2008) A navigator for human genome epidemiology. Nat Genet 40(2):124–125.CrossRefPubMedGoogle Scholar
  103. 103.
    Yu W, Clyne M, Dolan SM, Yesupriya A, Wulf A, Liu T, Khoury MJ, Gwinn M. (2008) GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique. BMC Bioinformatics 9:205.CrossRefPubMedGoogle Scholar
  104. 104.
    Cheng D, Knox C, Young N, Stothard P, Damaraju S, Wishart DS. (2008) PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res 36:W399–W405.CrossRefPubMedGoogle Scholar
  105. 105.
    Fang YC, Huang HC, Juan HF. (2008) MeInfoText: associated gene methylation and cancer information from text mining. BMC Bioinformatics 9:22.CrossRefPubMedGoogle Scholar
  106. 106.
    Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, Van Criekinge W. (2008) PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res 36:D842–D846.CrossRefPubMedGoogle Scholar
  107. 107.
    Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y. (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36:W377–W384.CrossRefPubMedGoogle Scholar
  108. 108.
    Perez-Iratxeta C, Bork P, Andrade-Navarro MA. (2008) Update of the G2D tool for prioritization of gene candidates to inherited diseases. Nucleic Acids Res 35: W212–W216.CrossRefGoogle Scholar
  109. 109.
    Gaulton KJ, Mohlke KL, Vision TJ. (2007) A computational system to select candidate genes for complex human traits. Bioinformatics 23(9):1132–1140.CrossRefPubMedGoogle Scholar
  110. 110.
    Krallinger M, Rojas A, Valencia A. (2008) Creating reference datasets for systems biology applications using text mining. Ann NY Acad Sci, accepted for publication. 1158:14–28.Google Scholar
  111. 111.
    Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J, Hirschman L, Valencia A. (2008) Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Genome Biol 9(Suppl 2):S1.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Martin Krallinger
    • 1
  • Florian Leitner
    • 1
  • Alfonso Valencia
    • 1
  1. 1.Centro Nacional de Investigaciones OncológicasMadridSpain

Personalised recommendations