Computational Approaches to Metabolomics

  • David S. Wishart
Part of the Methods in Molecular Biology book series (MIMB, volume 593)


This chapter is intended to familiarize readers with the field of metabolomics and some of the algorithms, data analysis strategies, and computer programs used to analyze or interpret metabolomic data. Specifically, this chapter provides a brief overview of the experimental approaches and applications of metabolomics followed by a description of the spectral and statistical analysis tools for metabolomics. The chapter concludes with a discussion of the resources that can be used to interpret and analyze metabolomic data at a biological or clinical level. Emerging needs, challenges, and recent progress being made in these areas are also discussed.

Key words

Metabolomics bioinformatics cheminformatics data analysis 


  1. 1.
    German JB, Hammock BD, Watkins SM. (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1:3–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Wishart DS. (2007) Human Metabolome Database: completing the “human parts list.” Pharmacogenomics 8:683–686.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmülling RM, Wahl HG. (2004) Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B 813:53–58.CrossRefGoogle Scholar
  4. 4.
    Williamson MP, Humm G, Crisp AJ. (1989) 1H nuclear magnetic resonance investigation of synovial fluid components in osteoarthritis, rheumatoid arthritis and traumatic effusions. Br J Rheumatol 28:23–27.CrossRefPubMedGoogle Scholar
  5. 5.
    Wishart DS, Querengesser LMM, Lefebvre BA, Epstein NA, Greiner R, Newton JB. (2001) Magnetic resonance diagnostics: a new technology for high-throughput clinical diagnostics. Clin Chemistry 47:1918–1921.Google Scholar
  6. 6.
    Moolenaar SH, Engelke UF, Wevers RA. (2003) Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann Clin Biochem 40:16–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Coen M, O’Sullivan M, Bubb WA, Kuchel PW, Sorrell T. (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin Infect Dis 41:1582–1590.CrossRefPubMedGoogle Scholar
  8. 8.
    Griffin JL, Bollard ME. (2004) Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5:389–398.CrossRefPubMedGoogle Scholar
  9. 9.
    Wishart DS. (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5:2814–2820.CrossRefPubMedGoogle Scholar
  10. 10.
    Wishart DS. (2007) Current progress in computational metabolomics. Brief Bioinform 8:279–293.CrossRefPubMedGoogle Scholar
  11. 11.
    Coley NG. (2004) Medical chemists and the origins of clinical chemistry in Britain (circa 1750–1850). Clin Chem 50:961–972.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenfeld L. (2001) Clinical chemistry since 1800: growth and development. Clin Chem 48:186–197.Google Scholar
  13. 13.
    Tietz NW. (1995) Clinical Guide to Laboratory Tests, 3rd ed., WB Saunders Press, Philadelphia, PA.Google Scholar
  14. 14.
    Dunn WB, Bailey NJ, Johnson HE. (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625.CrossRefPubMedGoogle Scholar
  15. 15.
    Cotter D, Maer A, Guda C, Saunders B, Subramaniam S. (2006) LMPD: LIPID MAPS proteome database. Nucleic Acids Res 34(Database issue):D507–510.CrossRefPubMedGoogle Scholar
  16. 16.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35(Database issue):D521–526.CrossRefPubMedGoogle Scholar
  17. 17.
    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751.CrossRefPubMedGoogle Scholar
  18. 18.
    Saude EJ, Sykes BD. (2007) Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 3:19–24.CrossRefGoogle Scholar
  19. 19.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703.CrossRefPubMedGoogle Scholar
  20. 20.
    Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T. (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77:8086–8094.CrossRefGoogle Scholar
  21. 21.
    Schnackenberg LK, Beger RD. (2006) Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics 7:1077–1086.CrossRefPubMedGoogle Scholar
  22. 22.
    German JB, Gillies LA, Smilowitz JT, Zivkovic AM, Watkins SM. (2007) Lipidomics and lipid profiling in metabolomics. Curr Opin Lipidol 18:66–71.PubMedGoogle Scholar
  23. 23.
    Guo K, Ji C, Li L. (2007) Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem 79:8631–8638.CrossRefPubMedGoogle Scholar
  24. 24.
    Weljie AM, Dowlatabadi R, Miller BJ, Vogel HJ, Jirik FR. (2007) An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J Proteome Res 6:3456–3464.CrossRefPubMedGoogle Scholar
  25. 25.
    van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T. (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370:17–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Trygg J, Holmes E, Lundstedt T. (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479.CrossRefPubMedGoogle Scholar
  27. 27.
    Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78: 4430–4442.CrossRefPubMedGoogle Scholar
  28. 28.
    Lavine B, Workman JJ, Jr. (2004) Chemometrics. Anal Chem 76:3365–3371.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu W, Daszykowski M, Walczak B, Sweatman BC, Connor SC, Haselden JN, Crowther DJ, Gill RW, Lutz MW. (2006) Peak alignment of urine NMR spectra using fuzzy warping. J Chem Inf Model 46:863–875.CrossRefPubMedGoogle Scholar
  30. 30.
    Kind T, Tolstikov V, Fiehn O, Weiss RH. (2007) A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem 363:185–195.CrossRefPubMedGoogle Scholar
  31. 31.
    Ding C, He X. (2004) K-means clustering via principal component analysis. Proc of the International Conference on Machine Learning (ICML 2004), pp. 225–232.Google Scholar
  32. 32.
    Holmes E, Nicholls AW, Lindon JC, Connor SC, Connelly JC, Haselden JN, Damment SJ, Spraul M, Neidig P, Nicholson JK. (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol 13:471–478.CrossRefPubMedGoogle Scholar
  33. 33.
    Smith IC, Baert R. (2003) Medical diagnosis by high resolution NMR of human specimens. IUBMB Life 55:273–277.CrossRefPubMedGoogle Scholar
  34. 34.
    Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817:67–76.CrossRefGoogle Scholar
  35. 35.
    Molinaro AM, Simon R, Pfeiffer RM. (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:3301–3307.CrossRefPubMedGoogle Scholar
  36. 36.
    Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL. (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31:15–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Niwa T. (1986) Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J Chromatogr 379:313–345.CrossRefPubMedGoogle Scholar
  38. 38.
    La Marca G, Casetta B, Malvagia S, Pasquini E, Innocenti M, Donati MA, Zammarchi E. (2006) Implementing tandem mass spectrometry as a routine tool for characterizing the complete purine and pyrimidine metabolic profile in urine samples. J Mass Spectrom 41:1442–1452.CrossRefPubMedGoogle Scholar
  39. 39.
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638.CrossRefPubMedGoogle Scholar
  40. 40.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL. (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–408.PubMedGoogle Scholar
  41. 41.
    Rossé G, Neidig P, Schröder H. (2002) Automated structure verification of small molecules libraries using 1D and 2D NMR techniques. Methods Mol Biol 201:123–139.PubMedGoogle Scholar
  42. 42.
    Kind T, Fiehn O. (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105.CrossRefPubMedGoogle Scholar
  43. 43.
    Jiang H, Somogyi A, Timmermann BN, Gang DR. (2006) Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols. Rapid Commun Mass Spectrom 20:3089–3100.CrossRefPubMedGoogle Scholar
  44. 44.
    Fardet A, Canlet C, Gottardi G, Lyan B, Llorach R, Rémésy C, Mazur A, Paris A, Scalbert A. (2007) Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach. J Nutr 137:923–929.PubMedGoogle Scholar
  45. 45.
    Margalit A, Duffin KL, Isakson PC. (1996) Rapid quantitation of a large scope of eicosanoids in two models of inflammation: development of an electrospray and tandem mass spectrometry method and application to biological studies. Anal Biochem 235:73–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Castro IA, Barroso LP, Sinnecker P. (2005) Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. Am J Clin Nutr 82:32–40.PubMedGoogle Scholar
  47. 47.
    Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–484.PubMedGoogle Scholar
  48. 48.
    Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2.CrossRefPubMedGoogle Scholar
  49. 49.
    Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L. (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8:R39.CrossRefPubMedGoogle Scholar
  50. 50.
    Alves R, Antunes F, Salvador A. (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672.CrossRefPubMedGoogle Scholar
  51. 51.
    Materi W, Wishart DS. (2007) Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today 12:295–303.CrossRefPubMedGoogle Scholar
  52. 52.
    Mendes P. (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9:563–571.PubMedGoogle Scholar
  53. 53.
    Kitano H, Funahashi A, Matsuoka Y, Oda K. (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23:961–966.CrossRefPubMedGoogle Scholar
  54. 54.
    Sauro HM. (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput Appl Biosci 9:441–450.PubMedGoogle Scholar
  55. 55.
    Shapiro BE, Levchenko A, Meyerowitz EM, Wold BJ, Mjolsness ED. (2003) Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19:677–678.CrossRefPubMedGoogle Scholar
  56. 55.
    Demir O, Aksan Kurnaz I. (2006) An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch. Comput Biol Chem 30:179–192.CrossRefPubMedGoogle Scholar
  57. 56.
    Gagneur J, Casari G. (2005) From molecular networks to qualitative cell behavior. FEBS Lett 579:1867–1871.CrossRefPubMedGoogle Scholar
  58. 57.
    Joyce AR, Palsson BO. (2007) Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach. Prog Drug Res 64:267–309.Google Scholar
  59. 58.
    Kauffman KJ, Prakash P, Edwards JS. (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496.CrossRefPubMedGoogle Scholar
  60. 59.
    Lee JM, Gianchandani EP, Papin JA. (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150.CrossRefPubMedGoogle Scholar
  61. 60.
    Oliveira AP, Nielsen J, Forster J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol5:39.CrossRefPubMedGoogle Scholar
  62. 61.
    Jin YS, Jeffries TW. (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6:229–238.CrossRefPubMedGoogle Scholar
  63. 62.
    Durmus Tekir S, Cakir T, Ulgen KO. (2006) Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches. Comput Biol Chem 30:327–338.CrossRefPubMedGoogle Scholar
  64. 63.
    Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q. (2006) Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2:2006.0031.CrossRefPubMedGoogle Scholar
  65. 64.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104:1777–1782.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David S. Wishart
    • 1
    • 2
  1. 1.Departments of Computing Science and Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.National Institute for NanotechnologyEdmontonCanada

Personalised recommendations