Comparative Genomic Hybridization by Representational Oligonucleotide Microarray Analysis

  • Robert Lucito
  • James Byrnes
Part of the Methods in Molecular Biology™ book series (MIMB, volume 556)


The central cause to any cancer ultimately lies in the genome and the initial alterations that result in changes in gene expression that are reflected in the phenotype of the cancer cell. The gene expression data are rich in information but the primary lesions responsible for carcinogenesis are obscured due to the complex cascade of expression changes that can occur. The primary lesions can be characterized by the smallest of point mutations to small insertions and deletions (in/dels) to much larger deletions and amplifications (for simplicity all copy number gains will be referred to as amplifications) as well as balanced or unbalanced translocations. In addition to these mutations there are a myriad of epigenetic alterations that affect the cells phenotype. Any gene if important to tumor growth will be altered by mutation or by deletion/amplification eventually, and if a large number of tumor samples is analyzed the majority of these genes will be detected. This chapter describes a variation of comparative genomic hybridization, called Representational oligonucleotide microarray analysis (ROMA), that surveys reduced-complexity representations of tumor genomic DNA to discover deletions and amplifications (and the underlying cancer genes).

Key words

Representational oligonucleotide microarray analysis ROMA comparative genomic hybridization DNA deletion DNA amplification 


  1. 1.
    Aguirre, A. J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., et al. (2004) High-resolution characterization of the pancreatic adenocarcinoma genome, Proc. Natl. Acad. Sci U. S. A. 101, 9067–9072.CrossRefGoogle Scholar
  2. 2.
    Barrett, M. T., Scheffer, A., Ben-Dor, A., Sampas, N., Lipson, D., Kincaid, R. et al. (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA, Proc. Natl. Acad. Sci. U. S. A. 101, 17765–17770.PubMedCrossRefGoogle Scholar
  3. 3.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays, Nat. Genet. 20, 207–211.PubMedCrossRefGoogle Scholar
  4. 4.
    Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays, Nat. Genet. 23, 41–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., et al. (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation, Genome Res. 13, 2291–2305.PubMedCrossRefGoogle Scholar
  6. 6.
    Lisitsyn, N., Lisitsyn, N., and Wigler, M. (1993) Cloning the differences between two complex genomes, Science 259, 946–951.PubMedCrossRefGoogle Scholar
  7. 7.
    Lucito, R., Nakimura, M., West, J. A., Han, Y., Chin, K., Jensen, K., et al. (1998) Genetic analysis using genomic representations, Proc. Natl. Acad. Sci. U. S. A. 95, 4487–4492.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Res. 30, e15.PubMedCrossRefGoogle Scholar
  9. 9.
    Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004) Circular binary segmentation for the analysis of array-based DNA copy number data, Biostatistics 5, 557–572.PubMedCrossRefGoogle Scholar
  10. 10.
    Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004) Detection of large-scale variation in the human genome, Nat. Genet. 36, 949–951.PubMedCrossRefGoogle Scholar
  11. 11.
    Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006) Global variation in copy number in the human genome, Nature 444, 444–454.PubMedCrossRefGoogle Scholar
  12. 12.
    Healy, J., Thomas, E. E., Schwartz, J. T., and Wigler, M. (2003) Annotating large genomes with exact word matches, Genome Res. 13, 2306–2315.PubMedCrossRefGoogle Scholar
  13. 13.
    Burrows, M., and Wheeler, D.J. (1994) in “Technical Report 124,” Digital Equipment Corporation, Palo Alto, CA.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert Lucito
    • 1
  • James Byrnes
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations