Advertisement

Blood Injection Subarachnoid Hemorrhage Rat Model

  • Hartmut Vatter
  • Erdem Gueresir
  • Volker Seifert
Protocol
  • 2k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

The pathophysiological mechanisms after subarachnoid hemorrhage (SAH) may be divided in an acute phase after the bleeding, which includes increased intracranial pressure, reduced cerebral blood flow (CBF), and delayed consequences of the subarachnoid blood clot. The subarachnoid blood infusion in rat injection models could be classified in to volume and pressure-dependent and furthermore in to single or double hemorrhage. Investigating the acute phase pressure-dependent models seems to mimic the pathological sequel superior to volume dependent. However, the development of delayed mechanisms, like a reduced CBF due to cerebral vasospasm or other pathological mechanisms seems mainly to be dependent on the amount and the duration of the subarachnoid blood. Accordingly, the double cisterna magna blood injection model will be presented in this chapter, in which a sufficient subarachnoidal blood distribution and contact time could be achieved with a reduced acute phase effect. Therefore, this model seems to be predisposed for investigation on delayed consequences of SAH.

Keywords

Rat Subarachnoid hemorrhage Vasospasm Blood injection cis-terna magna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sehba FA, Bederson JB: Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol. Res. 28:381–398, 2006PubMedCrossRefGoogle Scholar
  2. 2.
    Loch MR: Management of cerebral vasospasm. Neurosurg. Rev. 29:179–193, 2006CrossRefGoogle Scholar
  3. 3.
    Macdonald RL, Pluta RM, Zhang JH: Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat. Clin. Pract. Neurol. 3:256–263, 2007PubMedCrossRefGoogle Scholar
  4. 4.
    Prunell GF, Mathiesen T, Svendgaard NA: Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery 54:426–436, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Megyesi JF, Vollrath B, Cook DA, et al: In vivo animal models of cerebral vasos-pasm: a review. Neurosurgery 46:448–460, 2000PubMedCrossRefGoogle Scholar
  6. 6.
    Vatter H, Weidauer S, Konczalla J, et al: Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery 58:1190–1197, 2006PubMedCrossRefGoogle Scholar
  7. 7.
    Solomon RA, Antunes JL, Chen RY, et al: Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16:58–64, 1985PubMedGoogle Scholar
  8. 8.
    Meguro T, Clower BR, Carpenter R, et al: Improved rat model for cerebral vasos-pasm studies. Neurol.Res. 23:761–766, 2001PubMedCrossRefGoogle Scholar
  9. 9.
    Miyagi Y, Carpenter RC, Meguro T, et al: Upregulation of rho A and rho kinase messenger RNAs in the basilar artery of a rat model of subarachnoid hemorrhage. J. Neurosurg. 93:471–476, 2000PubMedCrossRefGoogle Scholar
  10. 10.
    Delgado TJ, Brismar J, Svendgaard NA: Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16:595–602, 1985PubMedGoogle Scholar
  11. 11.
    Rousselle CH, Lefauconnier JM, Allen DD: Evaluation of anesthetic effects on parameters for the in situ rat brain perfusion technique. Neurosci. Lett. 257:139– 142, 1998PubMedCrossRefGoogle Scholar
  12. 12.
    Lei H, Grinberg O, Nwaigwe CI, et al: The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res. 913:174–179, 2001PubMedCrossRefGoogle Scholar
  13. 13.
    Ryba MS, Gordon-Krajcer W, Walski M, et al: Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage in the rat brain and improves neurological outcome. Brain Res. 850:225–233, 1999PubMedCrossRefGoogle Scholar
  14. 14.
    Bederson JB, Pitts LH, Tsuji M, et al: Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476, 1986PubMedGoogle Scholar
  15. 15.
    Weidauer S, Vatter H, Dettmann E, et al: Assessment of vasospasm in experimental subarachnoid hemorrhage in rats by selective biplane digital subtraction angiogra-phy. Neuroradiology 48:176–181, 2006PubMedCrossRefGoogle Scholar
  16. 16.
    Verlooy J, Van Reempts J, Haseldonckx M, et al: The course of vasospasm following subarachnoid haemorrhage in rats. A vertebrobasilar angiographic study. Acta Neurochir. (Wien.) 117:48–52, 1992CrossRefGoogle Scholar
  17. 17.
    Longo M, Blandino A, Ascenti G, et al: Cerebral angiography in the rat with mam-mographic equipment: a simple, cost-effective method for assessing vasospasm in experimental subarachnoid haemorrhage. Neuroradiology 44:689–694, 2002PubMedCrossRefGoogle Scholar
  18. 18.
    Vatter H, Konczalla J, Weidauer S, et al: Characterization of the endothelin-B receptor expression and vasomotor function during experimental cerebral vasos-pasm. Neurosurgery 60:1100–1108, 2007PubMedGoogle Scholar
  19. 19.
    Trandafir CC, Nishihashi T, Wang A, et al: Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage. Clin. Exp. Pharmacol. Physiol 31:261–266, 2004PubMedCrossRefGoogle Scholar
  20. 20.
    Naveri L, Stromberg C, Saavedra JM: Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J. Cereb. Blood Flow Metab. 14:1096–1099, 1994PubMedGoogle Scholar
  21. 21.
    Jackowski A, Crockard A, Burnstock G, et al: The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J. Cereb. Blood Flow Metab. 10:835–849, 1990PubMedGoogle Scholar
  22. 22.
    Saida A, Ito H, Shibuya T, et al: Time-course alterations of monoamine levels and cerebral blood flow in brain regions after subarachnoid hemorrhage in rats. Brain Res. Bull. 43:69–80, 1997PubMedCrossRefGoogle Scholar
  23. 23.
    Clozel M, Watanabe H: BQ-123, a peptidic endothelin ETA receptor antagonist, prevents the early cerebral vasospasm following subarachnoid hemorrhage after intracisternal but not intravenous injection. Life Sci. 52:825–834, 1993PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Hartmut Vatter
    • 1
  • Erdem Gueresir
    • 1
  • Volker Seifert
    • 1
  1. 1.Department of NeurosurgeryJohann Wolfgang Goethe-UniversityFrankfurt/MainGermany

Personalised recommendations