Mesenchymal Stem Cells pp 27-44

Part of the Methods in Molecular Biology™ book series (MIMB, volume 449)

Mesenchymal Stem Cells from Adult Bone Marrow

  • Mark F. Pittenger


Mesenchymal stem cells (MSCs), sometimes referred to as marrow stromal cells or multipotential stromal cells, represent a class of adult progenitor cells capable of differentiation to several mesenchymal lineages. They can be isolated from many tissues although bone marrow has been used most often. The MSCs may prove useful for repair and regeneration of a variety of mesenchymal tissues such as bone, cartilage, muscle, marrow stroma, and the cells produce useful growth factors and cytokines that may help repair additional tissues. There is also evidence for their differentiation to nonmesenchymal lineages, but that work will not be considered here. This chapter will provide the researcher with some background, and then provide details on MSC isolation, expansion and multilineage differentiation. These are the beginning steps toward formulating tissue repair strategies. The methods provided here have been used in many laboratories around the world and the reader can begin by following the methods presented here, and then test other methods if these prove unsatisfactory for your intended purpose.


Mesenchymal stem cells (MSCs) direct plating isolation density gradient isolation lineage differentiation protocols chondrogenic adipogenic osteogenic 


  1. 1.
    1. Caplan, A. I (1991) Mesenchymal stem cells. J. Orthop. Res. 9:641–650.CrossRefPubMedGoogle Scholar
  2. 2.
    2. Haynesworth, S. E., Baber M. A., and Caplan, A. 1. (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80.CrossRefPubMedGoogle Scholar
  3. 3.
    3. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., and Caplan, A. 1. 1995. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4).557–564.PubMedGoogle Scholar
  4. 4.
    4. Pittenger, M. F., Mackay, A. M., Beck, S. C, Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. l., and Frolova, G. P. (1968) Heterotopic transplants of bone marrow: Analysis of precursor cells for osteogenic and haematopoietic tissues. Transplantation 6:230–247.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Friedenstein, A. J. (1976) Precursor cells of mechanocytes. Int. Rev. Cytol. 47:327–355.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Owen, M. E. and Friedenstein, A. J. (1988) Stromal stem cells: marrow derived osteogenic precursors. Ciba Found. Symp. 136:42–60.PubMedGoogle Scholar
  8. 8.
    8. Halvorsen, Y. C, Wilkison, W. O., and Gimble, J. M. (2000) Adipose-derived stromal cells their utility and potential in bone formation. Int J Obes Relat Metab Disord. 24:S41–44.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., and Gimble, J. M. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 189:54–63.CrossRefPubMedGoogle Scholar
  10. 10.
    10. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C, Eraser, J. K., Benhaim, P., and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell.13:4279–295.CrossRefPubMedGoogle Scholar
  11. 11.
    11. Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C, Dash, A. B., Clarke, J., Gleneck, K., Shihabuddin, L., and Tubo, R. (2002) Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng. 8:739–751.CrossRefPubMedGoogle Scholar
  12. 12.
    12. Phinney, D. G., Kopen, G., Isaacson, R. L., and Prockop, D. (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation. J. Cell. Biochem. 72:570–585.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Saito, T., Dennis, J. E., Lennon, D. P., Young, R. G., and Caplan, A. I. (1995) Myogenic expresssion of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Engin. 1(4): 327–343.CrossRefGoogle Scholar
  14. 14.
    14. Pereira, R. F., Halford, K. W., O'Hara, M. D., Leeper, D. B., Sokolov, B. P., Pollard, M. D., Bagasra, O., and Prockop, D. J. (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice. Proc. Natl. Acad. Sci. USA. 92:4857–4861.CrossRefPubMedGoogle Scholar
  15. 15.
    15. Dennis, J. E., Merriam, A., Awadalla, A., Yoo, J. U., Johnstone, B., and Caplan, A. 1. (1999) A quadripotent mesenchymal progenitor cell isolated from the marrow of an adult mouse. J. Bone Miner Res. 14:700–709.CrossRefPubMedGoogle Scholar
  16. 16.
    16. Short, B., Brouard, N., Driessen, R., and Simmons, P. J. (2001). Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy. 3:407, 408.CrossRefPubMedGoogle Scholar
  17. 17.
    17. Grigoriadis, A. E., Heersche, J., and Aubin, J. E. (1990) Continuously growing bipotential and monopotential myogenic, adipogenic and chondrogenic subclones isolated from the multipotential RCJ3.1 clonal cell line. Developmental Biology 142:313–318.CrossRefPubMedGoogle Scholar
  18. 18.
    18. LeBoy, P. S., Beresford, J., Devlin, C, and Owen, M. (1991) Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J. Cell Physiol. 146:370–378.CrossRefPubMedGoogle Scholar
  19. 19.
    19. Beresford, J. N., Bennett, J. H., Devlin, C, LeBoy, P. S., and Owen, M. (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102:341–351.PubMedGoogle Scholar
  20. 20.
    20. Kadiyala, S., Jaiswal, N., and Bruder, S. P. (1997) Culture-expanded bone marrow-derived mesenchynal stem cells can regenerate a critical-sized segmental bone defect. Tissue Engirt. 3:173–185.CrossRefGoogle Scholar
  21. 21.
    21. Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A., and Fischer, 1. (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77(2): 192–204.CrossRefPubMedGoogle Scholar
  22. 22.
    22. Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Goldberg, V. M., and Caplan, A. I. (1994) Mesenchymal cell based repair of large, full thickness defects of articular cartilage. J. Bone Joint Surg. 76:579–592.PubMedGoogle Scholar
  23. 23.
    23. Grande, D. A., Southerland, S. S., Ryhanna, Manji, B. S., Pate, D. W., Schwartz, R. E., and Lucas, P. A. (1995) Repair of articular defects using mesenchymal stem cells. Tissue Engin.1:345–353.CrossRefGoogle Scholar
  24. 24.
    24. Young, R. G., Butler, D. L., Weber, W., Caplan, A. 1., Gordon, S. L., and Fink, D. J. (1998) Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J. Orthop. Res. 16:406–413.CrossRefPubMedGoogle Scholar
  25. 25.
    25. Kadiyala, S., Young, R. G., Thiede, M. A., and Bruder, S. P. (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6(2): 125–134.CrossRefPubMedGoogle Scholar
  26. 26.
    26. Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W. P., Chen, H. H., Fritzges, D., Izbudak, I., Young, R. G., Marcelino, M., Pittenger, M. F., Solaiyappan, M., Boston, R. C, Tsui, B. M., Wahl, R. L., and Bulte, J. W. (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 112(10):1451–1461.CrossRefPubMedGoogle Scholar
  27. 27.
    27. Murphy, J. M., Fink, D. J., Hunziker, E. B., and Barry, F. P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48:3464–3474.CrossRefPubMedGoogle Scholar
  28. 28.
    28. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Pittenger, M. F., and Martin, B. J. (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1925.CrossRefPubMedGoogle Scholar
  29. 29.
    29. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C, Martin, B. J., Pittenger, M. F., Hare, J. M., and Bulte, J. W. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation. 107(18):2290–2293.CrossRefPubMedGoogle Scholar
  30. 30.
    30. Amado, L. C, Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G., Lehrke, S., Baumgartner, W. W., Martin, B. J., Heldman, A. W., and Hare, J. M. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA. 102(32):11,474–11,479.CrossRefGoogle Scholar
  31. 31.
    31. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., and Wilensky, R. L. (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27(9): 1114–1122.CrossRefPubMedGoogle Scholar
  32. 32.
    32. Mahmud, N., Pang, W., Cobbs, C, Alur, P., Borneman, J., Dodds, R., Archambault, M., Devine, S., Turian, J., Bartholomew, A., Vanguri, P., Mackay, A., Young, R., and Hoffman, R. (2004) Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp. Hematol. 32(5):494–501.CrossRefPubMedGoogle Scholar
  33. 33.
    33. Chapel, A., Bertho, J. M., Bensidhoum, M., Fouillard, L., Young, R. G., Frick, J., Demarquay, C, Cuvelier, P., Mathieu, E., Trompier, F., Dudoignon, N., Germain, C., Mazurier, C., Aigueperse, J.. Borneman, J., Gorin, N. C., Gourmelon, P., and Thierry, D. (2003). Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation- induced multiorgan failure syndrome. J. Gene Med. 5(12): 1028–1038.CrossRefPubMedGoogle Scholar
  34. 34.
    34. Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A., and Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 101(8):2999–3001.CrossRefPubMedGoogle Scholar
  35. 35.
    35. Bartholomew, A., Patil, S., Mackay, A., Nelson, M., Buyaner, D., Hardy, W., Mosca, J., Sturgeon, C., Siatskas, M., Mahmud, N., Ferrer, K., Deans, R., Moseley, A., Hoffman, R., and Devine, S. M. (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum. Gene Ther. 12(12):1527–1541.CrossRefPubMedGoogle Scholar
  36. 36.
    36. Haynesworth SE, Baber MA, and Caplan AI (1996) Cytokine expression by human marrow- derived mesenchymal progenitor cells in vitro: effects of dex and IL-1α. J. Cell. Physiol. 166: 585–592.CrossRefPubMedGoogle Scholar
  37. 37.
    37. Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., and Gerson, S. L. (1998). Phenotypic and functional comparison of marrow-derived mesenchymal stem cells and stromal cells. J. Cell Phys. 176:57–66.CrossRefGoogle Scholar
  38. 38.
    38. Reese, J. S., Koc, O. N., and Gerson, S. L. (1999) Human mesenchymal stem cells provide stromal support for efficient CD344+ transduction. J. Hematother. Stem Cell Res. 8:515–523.CrossRefPubMedGoogle Scholar
  39. 39.
    39. Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 21(2):131–142.CrossRefPubMedGoogle Scholar
  40. 40.
    40. Mackay, A. M., Beck, S. C, Murphy, J. M., Barry, F. P., Chichester, C. O., and Pittenger, M. F. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4(4): 415–428.CrossRefPubMedGoogle Scholar
  41. 41.
    41. Johnstone, B., Hering, T. M., Caplan, A. 1., Goldberg, V. M., and Yoo, J. U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 10;238(l):265–272.CrossRefGoogle Scholar
  42. 42.
    42. Jaiswal, R. K., Jaiswal, N., Bruder, S. P., Mbalaviele, G., Marshak, D. R., and Pittenger, M. F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275(13):9645–9652.CrossRefPubMedGoogle Scholar
  43. 43.
    43. Bittira, B., Shum-Tim, D., Al-Khaldi, A., and Chiu, R. C. 2003. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg. 24(3):393–398.CrossRefPubMedGoogle Scholar
  44. 44.
    44. Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95(l):9–20.CrossRefPubMedGoogle Scholar
  45. 45.
    45. Francois, S., Bensidhoum, M., Mouiseddine, M., Mazurier, C, Allenet, B., Semont, A., Frick, J., Sache, A., Bouchet, S., Thierry, D., Gourmelon, P., Gorin, N. C,, and Chapel, A. (2006). Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. .Stem Cells. 24:1020–1029.CrossRefPubMedGoogle Scholar
  46. 46.
    46. Klyushnenkova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. W., Deans, R. J., and Mcintosh, K. R. (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci.12(l):47–57.CrossRefPubMedGoogle Scholar
  47. 47.
    47. Di Nicola, M., Carlo-Stella, C, Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., and Gianni, A.M. (2002) Human bone marrow stromal cells suppress T-lym-phocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 99 (2002), 3838–3843.CrossRefPubMedGoogle Scholar
  48. 48.
    48. Aggarwal, S., and Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105(4):1815–1822.CrossRefPubMedGoogle Scholar
  49. 49.
    49. Le Blanc, K., and Pittenger, M. F. (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy. 7(1):36–45.CrossRefPubMedGoogle Scholar
  50. 50.
    50. Groh, M. E., Maitra, B., Szekely, E., and Koc, O.N. (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hemat. 33(8):928–934.CrossRefPubMedGoogle Scholar
  51. 51.
    51. Le Blanc, K., Rasmusson, 1., Sundberg, B., Gotherstrom, C, Hassan, M., Uzunel, M., and Ringden, O. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 363(9419):1439–1441.CrossRefPubMedGoogle Scholar
  52. 52.
    52. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L., and Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl Acad. Sci. USA.99 (13).8932–8937.CrossRefPubMedGoogle Scholar
  53. 53.
    53. Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E., and Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 79(11):1607–1614.CrossRefPubMedGoogle Scholar
  54. 54.
    54. Koc, O. N., Day, J., Nieder, M., Gerson, S. L., Lazarus, H. M., and Krivit, W. (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30(4):215–222.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark F. Pittenger
    • 1
  1. 1.Cardiology Dept of MedicineJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations