Advertisement

Isolation of Novel Large and Aggregating Bacteriophages

  • Philip Serwer
  • Shirley J. Hayes
  • Julie A. Thomas
  • Borries Demeler
  • Stephen C. Hardies
Part of the Methods in Molecular Biology™ book series (MIMB, volume 501)

Abstract

Viruses are detected via either biological properties such as plaque formation or physical properties. The physical properties include appearance during microscopy and DNA sequence derived from community sequencing. The assumption is that these procedures will succeed for most, if not all, viruses. However, we have found that some bacteriophages are in a category of viruses that are not detected by any of these classical procedures. Given that the data already indicate viruses to be the “largest reservoir of unknown genetic diversity on earth,” the implied expansion of this reservoir confirms the belief that the genome project has hardly begun. The first step is to fill gaps in our knowledge of the biological diversity of viruses, an enterprise that will also help to determine the ways in which (a) viruses have participated in evolution and ecology and (b) viruses can be made to participate in disease control and bioremediation. We present here the details of procedures that can be used to cultivate previously undetectable viruses that are either comparatively large or aggregation-prone.

Key Words

Agarose gel dilute agarose gel structure of bacteriophage propagation microbial diversity microbial genomics 

References

  1. 1.
    Wommack, K. E., K. E. Williamson, R. R. Helton, S. R. Bench and D. M. Winget. 2007., companion article.Google Scholar
  2. 2.
    Adams, M. H. 1959. Bacteriophages, N.Y. Interscience Publishers, New York.Google Scholar
  3. 3.
    Carlson, K. 2005. Appendix: Working with bacteriophages: Common techniques and methodological appproaches. In: Bacteriophages: Biology and Applications (Kutter, E. and Sulakvelidze, A., Eds.), CRC Press, Boca Raton, pp.437–494.Google Scholar
  4. 4.
    Guttman, B., R. Raya and E. Kutter. 2005. Basic phage biology. In: Bacteriophages: Biology and Applications (Kutter, E. and Sulakvelidze, A., eds.), CRC Press, Boca Raton, pp. 29–66.Google Scholar
  5. 5.
    Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127–181.PubMedCrossRefGoogle Scholar
  6. 6.
    Williamson, K. E., M. Radosevich and K. E. Wommack. 2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71: 3119–3125.PubMedCrossRefGoogle Scholar
  7. 7.
    Ashelford, K. E., M. J. Day and J. C. Fry. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69: 285–289.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunigan, D. D., L. A. Fitzgerald and J. L. Van Etten. 2006. Phycodnaviruses: a peek at genetic diversity. Virus Res. 117: 119–132.PubMedCrossRefGoogle Scholar
  9. 9.
    Iyer, L. M., S. Balaji, E. V. Koonin and L. Aravind. 2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117: 156–184.PubMedCrossRefGoogle Scholar
  10. 10.
    Claverie, J, M., H. Ogata, S. Audic, C. Abergel, K. Suhre and P. E. Fournier. 2006. Mimivirus and the emerging concept of “giant” virus. Virus Res. 117: 133–144.PubMedCrossRefGoogle Scholar
  11. 11.
    Fangman, W. L. 1978. AAA Nucleic Acids Res., 5, 653–665.PubMedCrossRefGoogle Scholar
  12. 12.
    Serwer, P. S. J. Hayes, S. Zaman, K. Lieman, M. Rolando and S. C. Hardies. 2004. Improved isolation of under sampled bacteriophages: Finding of distant terminase genes. Virology 329: 412–424.PubMedGoogle Scholar
  13. 13.
    Mesyanzhinov, V. V., J. Robben, B. Grymonprez, V. A. Kostyuchenko, M. V. Bourkaltseva, N. N. Sykilinda, V. N. Krylov and G. Volckaert. 2002. The genome of bacteriophage \(\phi\)KZ of Pseudomonas aeruginosa. J. Mol. Biol. 317: 1–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Petrov, V. M., Nolan, J. M., Bertrand, C., Levy, D., Desplats, C., Krisch, H. M. & Karam, J. D. (2006) Plasticity of the gene functions for DNA replication in the T4-like phages. J. Mol. Biol., 361: 46–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Donelli, G. 1968. Isolamento di un batteriofago di eccezionali dimensioni attivo su B. megatherium. Atti Accad. Naz. Lincei-Rend. Clas. Sci. Fis. Mat. Nat. 44: 95–97.Google Scholar
  16. 16.
    Serwer, P., A. Estrada and R. A. Harris. 1995. Video light microscopy of 670 Kb DNA in a hanging drop: Shape of the envelope of DNA. Biophys. J. 69: 2649–2660.Google Scholar
  17. 17.
    Serwer, P. 1983. Agarose gels: Properties and use for electrophoresis. Electrophoresis 4: 375–382.CrossRefGoogle Scholar
  18. 18.
    Griess, G. A., E. T. Moreno, R. A. Easom and P. Serwer, P. 1989. The sieving of spheres during agarose gel electrophoresis: Quantitation and modeling.Biopolymers 28: 1475–1484.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang, S., S. J. Hayes, K. Lieman, G. A. Griess and P. Serwer. 2001. Strategies for analysis of the evolution of bacteriophages. Recent Res. Devel. Virol. 3: 1–12.Google Scholar
  20. 20.
    Griess, G. A., D. M. Edwards, M. Dumais, R. A. Harris, D. W. Renn and P. Serwer. 1993. Heterogeneity of the pores of polysaccharide gels: Dependence on the molecular weight and derivatization of the polysaccharide. J. Struct. Biol. 111: 39–47.CrossRefGoogle Scholar
  21. 21.
    Serwer, P. and G. A. Griess. 1999. Advances in the separation of bacteriophages and related particles. J. Chromatogr. B 722: 179–190.CrossRefGoogle Scholar
  22. 22.
    Matsuzaki, S., M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi and S. Imai. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. Infection Chemotherapy 11: 211–219.CrossRefGoogle Scholar
  23. 23.
    Sulakvelidze, A. (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discovery Today 10: 807–809.PubMedCrossRefGoogle Scholar
  24. 24.
    Clark, J. R. and J. B. March. 2006. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 24: 212–218.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, J., M. Dehbi, G. Moeck, F. Arhin, P. Bauda, D. Bergeron, M. Callejo, V. Ferretti, N. Ha, T. Kwan, J. McCarty, R. Srikumar, D. Williams, J. J. Wu, P. Gros, J. Pelletier and M. DuBow. 2004. Antimicrobial drug discovery through bacteriophage genomics. Nature Biotechnol. 22: 185–191.CrossRefGoogle Scholar
  26. 26.
    Miedzybrodzki, R., W. Fortuna, B. Weber-Dabrowska and A. Gorski. 2005. Bacterial viruses against viruses pathogenic for man? Virus Res. 110: 1–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Brüssow, H. and E. Kutter. 2005. Genomics and evolution of tailed phages. In: Bacteriophages: Biology and Applications (Kutter, E. & Sulakvelidze, A., eds.), CRC Press, Boca Raton, pp. 91–128.Google Scholar
  28. 28.
    Casjens, S. R. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol. 8: 451–458PubMedCrossRefGoogle Scholar
  29. 29.
    Hendrix, R. W. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506–511.PubMedCrossRefGoogle Scholar
  30. 30.
    Bennett, M. J., M. R. Sawaya and D. Eisenberg. 2006. Deposition diseases and 3D domain swapping. Structure 14: 811–824.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, H., I. Wu, Q. Yang, C. E. Catalano and P. Serwer. 2005. Single-particle visualization of assembly: I. Dimerization in a planar zone. J. Microscop. 217: 83–92.CrossRefGoogle Scholar
  32. 32.
    Serwer, P., S. J. Hayes, K. Lieman and G. A. Griess. 2007. In situ fluorescence microscopy of DNA bacteriophage aggregates. J. Microsc. 228: 309–321.PubMedCrossRefGoogle Scholar
  33. 33.
    Fortier, L.-C. and S. Moineau, (2006) Accompanying manuscript (Chapter 16).Google Scholar
  34. 34.
    Lillehaug, D. 1997. An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages.J. Appl. Microbiol. 83: 85–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Serwer, P., W. E. Masker and J. L. Allen. 1983. Stability and in vitro DNA packaging of bacteriophages: effects of dextrans, sugars, and polyols. J. Virol. 45: 665–671.PubMedGoogle Scholar
  36. 36.
    MacGregor, I. K., A. L. Anderson T. M. Laue. 2004. Fluorescence detection for the XLI analytical ultracentrifuge. Biophys. Chem. 108: 165–185.PubMedCrossRefGoogle Scholar
  37. 37.
    Demeler, B. and K. E. van Holde. 2004. Sedimentation velocity analysis of highly heterogeneous systems. Anal. Biochem. 335: 279–288.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Philip Serwer
    • 1
  • Shirley J. Hayes
    • 1
  • Julie A. Thomas
    • 1
  • Borries Demeler
    • 1
  • Stephen C. Hardies
    • 1
  1. 1.Department of BiochemistryThe University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations