Transgenic Delivery and Detection of GFP in Neuropeptide Neurons

  • J.L. Holter
  • J.S. Davies
  • P.-S. Man
  • T. Wells
  • D.A. Carter
Part of the Neuromethods book series (NM, volume 39)


The first bioengineered autofluorescent protein, GFP (green fluorescent protein), was developed more than 10 years ago (1). In recent years both this fluorescent protein and numerous variants (alternatively colored, destabilized, etc.; see (2)) have been widely adopted in experimental neuroscience (3). When expressed in cultured cells and transgenic animals, GFP provides for direct (in situ) cellular visualization and thereby optical selection of individual cells for morphological, physiological, and molecular characterization. For some studies, generalized expression of GFP (e.g., actin gene promoter-driven; (4)) may be useful in facilitating the analysis of individual cell types. In general, however, the principal value of FP expression lies in spatial resolution, obtained through restriction of expression to a subpopulation of cells. In this case a more refined transgenic approach is required in which GFP is expressed under the control of a cell-specific gene promoter....

Key Words

transgene rat fluorescent protein immunocytochemistry Western blot somatostatin pituitary cortex striatum 


  1. 1.
    Chalfie, M., Tu, Y., Euskirchen, G, Ward, W.W., and Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science, 1994; 263: 802–805.CrossRefPubMedGoogle Scholar
  2. 2.
    Utermark, J., and Karlovsky, P. Quantification of green fluorescent protein fluorescence using real-time PCR thermal cycler. Biotechniques, 2006; 41: 152–154.CrossRefGoogle Scholar
  3. 3.
    Spergel, D.J., Kruth, U., Shimshek, D.R., Sprengel, R., and Seeburg, P.H. Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog. Neurobiol., 2001; 63: 673–686.CrossRefPubMedGoogle Scholar
  4. 4.
    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. ‘‘Green mice’’ as a source of ubiquitous green cells. FEBS Lett., 1997; 407: 313–319.CrossRefPubMedGoogle Scholar
  5. 5.
    Balthasar, N., Mery, P.F., Magoulas, C.B., Mathers, K.E., Martin, A., Mollard, P., and Robinson, I.C. Growth hormone-releasing hormone (GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice: A ventral hypothalamic network. Endocrinology, 2003; 144: 2728–2740.CrossRefPubMedGoogle Scholar
  6. 6.
    Sugino, K., Hempel, C.M., Miller, M.N.,Hattox, A.M., Shapiro, P., Wu, C., Huang, Z.J., and Nelson, S.B. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci., 2006; 9: 99–107.CrossRefPubMedGoogle Scholar
  7. 7.
    Burke, N.V., Han, W., Li, D., Takimoto, K., Watkins, S.C.,and Levitan, E.S. Neuronal peptide release is limited by secretory granule mobility. Neuron, 1997; 19: 1095–1102.CrossRefPubMedGoogle Scholar
  8. 8.
    Young, W.S., Iacangelo, A., Luo, X.Z., King, C., Duncan, K., and Ginns, E.I. Transgenic expression of green fluorescent protein in mouse oxytocin neurons. J. Neuroendocrinol., 1999; 11: 935–939.CrossRefPubMedGoogle Scholar
  9. 9.
    Davies, J.S., Holter, J.L., Knight, D., Beaucourt, S.M., Murphy, D., Carter, D.A., and Wells, T. Manipulating sorting signals to generate co-expression of somatostatin and eGFP in the regulated secretory pathway from a monocistronic construct. J. Mol. Endocrinol., 2004; 33: 523–532.CrossRefPubMedGoogle Scholar
  10. 10.
    Houdebine, L.M., and Attal, J. Internal ribosome entry sites (IRESs): Reality and use. Transgenic Res., 1999; 8: 157–177.CrossRefPubMedGoogle Scholar
  11. 11.
    Krestel, H.E., Mayford, M., Seeburg, P.H., and Sprengel, R. A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res., 2001; 29: E39.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang, B.J., Kusano, K., Zerfas, P., Iacangelo, A.,Young, W.S., and Gainer, H. Targeting of green fluorescent protein to secretory granules in oxytocin magnocellular neurons and its secretion from neurohypophysial nerve terminals in transgenic mice. Endocrinology, 2002; 143: 1036–1046.CrossRefPubMedGoogle Scholar
  13. Transgenesis techniques. In Methods in Molecular Biology, Vol. 18, D. Murphy and D.A. Carter, eds. Humana Press, Totowa, NJ, 1993.Google Scholar
  14. 14.
    Slade, J.P., Man, P.-S., Wells, T., and Carter, D.A. Stimulus-specific induction of an egr-1 transgene in rat brain. Neuroreport, 2001; 13: 671–674.CrossRefGoogle Scholar
  15. 15.
    Man, P.-S., and Carter, D.A. Oestrogenic regulation of an egr-1 transgene in rat anterior pituitary. J. Mol. Endocr., 2002; 30: 187–193.CrossRefGoogle Scholar
  16. 16.
    Smith, M., Burke, Z., Humphries, A., Wells, T., Klein, D., Carter, D., and Baler, R. Tissue-specific transgenic knockdown of Fos-related antigen 2 (Fra-2) expression mediated by dominant negative Fra-2. Mol. Cell. Biol., 2001; 21: 3704–3713.CrossRefPubMedGoogle Scholar
  17. 17.
    Shariatmadari, R., Sipila, P.P., Huhtaniemi, I.T., and Poutanen, M. Improved technique for detection of enhanced green fluorescent protein in transgenic mice. Biotechniques, 2001; 30: 1282–1285.PubMedGoogle Scholar
  18. 18.
    van den Pol, A.N., and Ghosh, P.K. Selective neuronal expression of green fluorescent protein with cytomegalovirus promoter reveals entire neuronal arbor in transgenic mice. J. Neurosci., 1998; 18: 10640–10651.PubMedGoogle Scholar
  19. 19.
    Magoulas, C., McGuinness, L., Balthasar, N., Carmignac, D.F., Sesay, A.K., Mathers, K.E., Christian, H., Candeil, L., Bonnefont, X., Mollard, P., and Robinson, I.C. A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice. Endocrinology, 2000; 141: 4681–4689.CrossRefPubMedGoogle Scholar
  20. 20.
    Carter, D, Cellular transcriptomics—The next phase of endocrine expression profiling. Trends Endocrinol. Metab., 2006; 17: 192–198.CrossRefPubMedGoogle Scholar
  21. 21.
    Lobo, M.K., Karsten, S.L., Gray, M., Geschwind, D.H., and Yang, X.W. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat. Neurosci., 2006; 9: 443–452.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • J.L. Holter
    • 1
  • J.S. Davies
    • 2
  • P.-S. Man
    • 2
  • T. Wells
    • 2
  • D.A. Carter
    • 2
  1. 1.Department of Basic Sciences and Aquatic MedicineThe Norwegian School of Veterinary Science, UllevålsveienOsloNorway
  2. 2.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations