Telomerase Inhibition Combined with Other Chemotherapeutic Reagents to Enhance Anti-Cancer Effect

  • Tetsuzo Tauchi
  • Junko H. Ohyashiki
  • Kazuma Ohyashiki
Part of the Methods in Molecular Biology™ book series (MIMB, volume 405)


Genetic experiments using a dominant-negative form of human telomerase (DN-hTERT) demonstrated that telomerase inhibition can result in telomeric shortening followed by proliferation arrest and cell death by apoptosis. Neoplastic cells from telomerase RNA null (mTERC−/−) mice showed enhanced chemosensitivity to doxorubicin or related double-strand DNA break (DSB)-inducing agents. Telomerase dysfunction, rather than telomerase inhibition, is proposed to be the principal determinant governing chemosensitivity specifically to DSB-inducing agents. We observed that imatinib and vincristine (VCR), in addition to DSB-inducing agents, also enhanced chemosensitivity in telomestatin-treated K562 cells. This observation suggests that combined use of telomerase inhibitors and imatinib or other chemotherapeutic agents may be a very useful approach to treatment of BCR-ABL-positive leukemia.

Key Words

Telomerase inhibition G-quadruplex apoptosis hTERT 


  1. 1.
    Blackburn, E., and Greider, C. (eds) Telomeres. New York: Cold Spring Harbor Laboratory Press, 1995.Google Scholar
  2. 2.
    van Steensel, B., Smogorzewska, A., and de Lange, T. TRF protects human telomeres from end-to-end fusions. Cell, 92: 401–413, 1998.CrossRefPubMedGoogle Scholar
  3. 3.
    de Lange, T., and Jacks, T. For better or worse? Telomerase inhibition and cancer. Cell, 98: 273–275, 1999.CrossRefPubMedGoogle Scholar
  4. 4.
    Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res., 256: 271–282, 1991.PubMedGoogle Scholar
  5. 5.
    Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science, 279: 349–352, 1998.CrossRefPubMedGoogle Scholar
  6. 6.
    Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 396: 84–88, 1998.CrossRefPubMedGoogle Scholar
  7. 7.
    Jiang, X.R., Jimenetz, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A.G., Wahl, G.M., Tlsty, T.D., and Chiu, C.P. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet., 21: 111–114, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Morales, C.P., Holt, S.E., Ouellette, M., Kaur, K.J., Yan, Y., Wilson, K.S., White, M.A., Wright, W.E., and Shay, J.W. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet., 21: 115–118, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W., and Weinberg, R.A. Creation of human tumor cells with defined genetic elements. Nature, 400: 464–468, 1999.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang, J., Hannon, G.J., and Beach, D.H. Risky immortalization by telomerase. Nature, 405: 401–402, 2000.CrossRefGoogle Scholar
  11. 11.
    Weitzman, J.B., and Yaniv, M. Rebuilding the road to cancer. Nature, 400: 401–402, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Hahn, C.W., Stewart, S.A., Brooks, M.W., York, S.G., Eaton, E., Kurachi, A., Beijersbergen, R.L., Knoll, J.H.M., Meyerson, M., and Weinberg, R.A. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med., 5: 1164–1170, 1999.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, X., Mar, V., Zhou, W., Harrington, L., and Robinson, M.O. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev., 13: 2388–2399, 1999.CrossRefPubMedGoogle Scholar
  14. 14.
    Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Golllieb, G.D., Chin, L., and DePinho, R. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 406: 641–645, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Wright, W.E., and Shay, J.W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat. Med., 6: 849–851, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Maida, Y., Kyo, S., Kanaya, T., Wang, Z., Yatabe, N., Tanaka, M., Nakamura, M., Ohmichi, M., Gotoh, N., Murakami, S., and Inoue, M. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene, 21: 4071–4079, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Sawyers, C.L., McLauglin, J., Goga, A., Havlik, M., and Witte, O. The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell, 77: 121–131, 1994.CrossRefPubMedGoogle Scholar
  18. 18.
    Kharbana, S., Kumar, V., Dhar, S., Pandey, P., Chen, C., Majumder, P., Yuan, Z.-M., Whang, Y., Stauss, W., Pandia, T.K., Weaver, P.D., and Kufe, D. Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr. Biol., 10: 568–575, 2000.CrossRefGoogle Scholar
  19. 19.
    Vigneri, P., and Wang, J.Y.J. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med., 7: 228–234, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Baur, J.A., Zou, Y., Shay, J.W., and Wright, W.E. Telomere position effect in human cells. Science, 292: 2075–2077, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Shin-ya, K., Wierzba, K., Matsuo, K., Yamada, Y., Furihata, K., Hayakawa, Y., and Seto, H. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J. Am. Chem. Soc., 123: 1262–1263, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tetsuzo Tauchi
    • 1
  • Junko H. Ohyashiki
    • 1
  • Kazuma Ohyashiki
    • 1
  1. 1.First Department of Internal MedicineTokyo Medical UniversityTokyoJapan

Personalised recommendations