2D PAGE: Sample Preparation and Fractionation pp 23-34

Part of the Methods in Molecular Biology™ book series (MIMB, volume 424) | Cite as

Bacteria and Yeast Cell Disruption Using Lytic Enzymes

  • Oriana Salazar


Enzymatic methods provide a convenient alternative for overcoming technical disadvantages of mechanical disruption. Protocols for protein extraction from bacteria and Saccharomyces cerevisiae using lytic enzymes are presented in this chapter. Adaptation of the yeast protocol to a microtiter plate format makes this protocol amenable for proteomic applications and high-throughput screening of libraries expressing genetic variants in yeast. This methodology can also be applied to bacteria.

Key Words

Cell lysis yeast-lytic endoglucanase bacteriolytic enzyme lysozyme microtiter-plate format 


  1. 1.
    Koch, A.L. (1998) Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. Res Microbiol 149, 689–701.CrossRefPubMedGoogle Scholar
  2. 2.
    Shockman, G.D., Daneo-Moore, L., Kariyama, R. and Massidda, O. (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis Microb Drug Resist. 2, 95–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Ibrahim, H. R., Aoki, T. and Pellegrini, A. (2002) Strategies for new antimicrobial proteins and peptides: Lysozyme and aprotinin as model molecules. Curr. Pharm. Design 8, 671–693.CrossRefGoogle Scholar
  4. 4.
    Iacono, V.J., Zove, S.M., Grossbard, B.L., Pollock, J.J., Fine, D.H., Greene, L.S. (1985) Lysozyme-mediated aggregation and lysis of the periodontal microorganism Capnocytophaga gingivalis 2010. Infect Immun. 47, 457–464.PubMedGoogle Scholar
  5. 5.
    Laible, N.J. and Germaine, G.R. (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun.48, 720–728.PubMedGoogle Scholar
  6. 6.
    Ibrahim, H.R., Matsuzaki, T. and Aoki, T. (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506, 27–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Masschalck, B., Deckers, D. and Michiels, C.W. (2002) Lytic and nonlytic mechanism of inactivation of gram-positive bacteria by lysozyme under atmospheric and high hydrostatic pressure. J Food Prot. 65, 1916–1923.PubMedGoogle Scholar
  8. 8.
    Bera, A., Herbert, S., Jakob, A., Vollmer, W., Gotz, F. (2005) Why are pathogenic staphylococci so lysozyme resistantβ The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus Mol. Microbiol. 55, 778–787.CrossRefPubMedGoogle Scholar
  9. 9.
    Shiba, T., Harada, S., Sugawara, H., Naitow, H., Kai Y., Satow, Y. (2000) Crystallization and preliminary X-ray analysis of a bacterial lysozyme produced by Streptomyces globisporus. Acta Crystallogr D Biol Crystallogr. 56, 1462–1463.CrossRefPubMedGoogle Scholar
  10. 10.
    Rau, A., Hogg, T., Marquardt, R., Hilgenfeld, R. (2001) A new lysozyme fold. Crystal structure of the muramidase from Streptomyces coelicolor at 1.65 A resolution. J Biol Chem. 276, 31994–31999.CrossRefPubMedGoogle Scholar
  11. 11.
    Hash, J.H., Rothlauf, M.V. (1967) The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem. 242, 5586–5590.PubMedGoogle Scholar
  12. 12.
    Schindler, C.A. and Schuhardt, V.T. (1964) Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc. Natl Acad. Sci. USA. 51, 414–421.Google Scholar
  13. 13.
    Malatesta, M.L., Heath, H.E., LeBlanc, P.A., Sloan, G.L. (1992) EGTA inhibition of DNase activity in commercial lysostaphin preparations. Biotechniques. 12, 70–72.PubMedGoogle Scholar
  14. 14.
    Kollar, R., Petrakova, E., Ashwell, G., Robbins, P.W., Cabib, E. (1995) Architecture of the yeast cell wall. The linkage between chitin and β (1–>3)-glucan. J. Biol. Chem . 270, 1170–1178.CrossRefPubMedGoogle Scholar
  15. 15.
    Lipke, P.N. and Ovalle, R. (1998) Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180, 3735–37340.PubMedGoogle Scholar
  16. 16.
    Bielecki, S. and Galas, E. (1991) Microbial beta-glucanases different from cellulases. Crit. Rev. Biotechnol. 10, 275–304.CrossRefPubMedGoogle Scholar
  17. 17.
    Obata, T., Fujioka, K., Hara, S. and Namba, Y. (1977) The synergistic effects among β-1, 3-glucanases from Oerskovia sp. CK on lysis of viable yeast cells. Agric. Biol. Chem. 41, 671–677.Google Scholar
  18. 18.
    Ventom, A.M. and Asenjo, J.A. (1990) Purification of the major glucanase of Oerskovia xanthineolytica LL-G109. Biotechnol Tech 4, 165–170.Google Scholar
  19. 19.
    Ventom, A.M. and Asenjo, J.A. (1991) Characterization of yeast lytic enzymes from Oerskovia xanthineolytica LL-G109. Enzyme Microbiol. Technol. 13, 71–75CrossRefGoogle Scholar
  20. 20.
    Ferrer, P. (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic -1,3-glucanases toolbox: A review. Microbial Cell Factories 5, 10–18.CrossRefPubMedGoogle Scholar
  21. 21.
    Asenjo, J.A., Ventom, A.M., Huang, R.-B. and Andrews, B.A. (1993) Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Bio/technol. 11, 214–217.CrossRefGoogle Scholar
  22. 22.
    Salazar, O., Molitor, J., Lienqueo, M.E. and Asenjo, J.A. (2001) Overproduction, purification and characterization of #x03B2;-1,3-glucanase type II in Escherichia coli Prot Expres. Purif. 23, 219–225.CrossRefGoogle Scholar
  23. 23.
    Shen, S.-H., Chr’tien, P., Bastien, L. and Slilaty, S.N. (1991) Primary sequence of the glucanase gene from Oerskovia xanthineolytica. J. Biol. Chem. 266, 1058–1063.PubMedGoogle Scholar
  24. 24.
    Scott, J.H. and Scheckman, R. (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis J. Bacteriol. 142, 414–423.PubMedGoogle Scholar
  25. 25.
    Salazar, O., Basso, C., Barba, P., Orellana, C. and Asenjo, J.A. (2006) Improvement of the lytic properties of a β-1,3-glucanase by directed evolution. Mol. Biotechnol. 33, 211–220.CrossRefPubMedGoogle Scholar
  26. 26.
    Chassy, B.M. and Giuffrida, A. 1980. Method for the lysis of Gram-positive, asporogenous bacteria with lysozyme. Appl. Environ. Microbiol. 39, 153–158.PubMedGoogle Scholar
  27. 27.
    Niwa T., Kawamura, Y., Katagiri, Y., Ezaki, T. (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods. 61,251–260.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Oriana Salazar
    • 1
  1. 1.University of ChileSantiagoChile

Personalised recommendations