A Novel Approach Using MALDI-TOF/TOF Mass Spectrometry and Prestructured Sample Supports (AnchorChip Technology) for Proteomic Profiling and Protein Identification

  • Sau-Mei Leung
  • Rebecca L. Pitts
Part of the Methods in Molecular Biology™ book series (MIMB, volume 441)

Summary

Mass spectrometry (MS)-based proteomic profiling and protein identification has become a powerful tool for the discovery of new disease biomarkers. Among the MS platforms, matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS offers high sample throughput and the flexibility to couple with different off-line sample fractionation techniques. Here, we present a strategy using MALDI-TOF/TOF MS to analyze fractionated human serum samples for proteomic profiling and then identify serum peptides from these proteomic profiles. We achieve the profiling analyses by using different functionalized magnetic beads to enrich specific subsets of serum proteins/peptides based on their absorption to these beads. This step is followed by elution, transfer onto prestructured sample supports (AnchorChip™ targets), and analysis in a MALDI-TOF/TOF mass spectrometer. Selected serum peptides are then analyzed in the tandem MS (TOF/TOF) mode to generate fragment ions for determination of their amino acid sequences. We have demonstrated that using this approach, proteomic profiling and protein identification can be done in a single MS instrument.

Key Words

MALDI TOF/TOF profiling biomarkers AnchorChip tandem MS magnetic beads clinical proteomics serum 

References

  1. 1.
    Adam, B. L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares, L. H., Semmes, O. J., Schellhammer, P. F., Yasui, Y., Feng, Z., and Wright, G. L., Jr. (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614.PubMedGoogle Scholar
  2. 2.
    Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.CrossRefPubMedGoogle Scholar
  3. 3.
    Ye, B., Cramer, D. W., Skates, S. J., Gygi, S. P., Pratomo, V., Fu, L., Horick, N. K., Licklider, L. J., Schorge, J. O., Berkowitz, R. S., and Mok, S. C. (2003) Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using prote omic profiling and mass spectrometry. Clin. Cancer Res. 9, 2904–2911.PubMedGoogle Scholar
  4. 4.
    Zhang, Z., Bast, R. C., Jr., Yu, Y., Li, J., Sokoll, L. J., Rai, A. J., Rosenzweig, J. M., Cameron, B., Wang, Y. Y., Meng, X. Y., Berchuck, A., Van Haaften-Day, C., Hacker, N. F., de Bruijn, H. W., van der Zee, A. G., Jacobs, I. J., Fung, E. T., and Chan, D. W. (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 64, 5882–5890.CrossRefPubMedGoogle Scholar
  5. 5.
    Xu, X. Q., Leow, C. K., Lu, X., Zhang, X., Liu, J. S., Wong, W. H., Asperger, A., Deininger, S., and Eastwood Leung, H. C. (2004) Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics. Proteomics 4, 3235–3245.CrossRefPubMedGoogle Scholar
  6. 6.
    Villanueva, J., Philip, J., Entenberg, D., Chaparro, C. A., Tanwar, M. K., Holland, E. C., and Tempst, P. (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570.CrossRefPubMedGoogle Scholar
  7. 7.
    Pusch, W., Flocco, M. T., Leung, S.-M., Thiele, H., and Kostrzewa, M. (2003) Mass spectrometry-based clinical proteomics. Pharmacogenomics 4, 1–14.CrossRefGoogle Scholar
  8. 8.
    Zhang, X. Y., Leung, S.-M., Morris, C. R., and Shigenaga, M. K. (2004) Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF MS with prestructured sample supports and pattern recognition software for profiling potential biomarkers in human plasma. J. Biomol. Tech. 15, 167–175.PubMedGoogle Scholar
  9. 9.
    Koomen, J. M., Shih, L. N., Coombes, K. R., Li, D., Xiao, L. C., Fidler, I. J., Abbruzzese, J. L., and Kobayashi, R. (2005) Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin. Cancer Res. 11, 1110–1118.PubMedGoogle Scholar
  10. 10.
    Schuerenberg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., and Nordhoff, E. (2000) Prestructured MALDI-MS sample supports. Anal. Chem. 72, 3436–3442.CrossRefPubMedGoogle Scholar
  11. 11.
    Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., and Nordhoff, E. (2001) Alpha-Cyano-4-HCCA affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal. Chem. 73, 434–438.CrossRefPubMedGoogle Scholar
  12. 12.
    Nordhoff, E., Schuerenberg, M., Thiele, G.; Lubbert, C., Kloeppel, K.-D., Theiss, D., Lehrach, H., and Gobom, J. (2003) Sample preparation protocols for MALDI-MS of peptides and oligonucleotides using prestructured sample supports. Int. J. Mass. Spectrom. 226, 163–180.CrossRefGoogle Scholar
  13. 13.
    Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J., and Holle, A. (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965.CrossRefPubMedGoogle Scholar
  14. 14.
    Macht, M., Asperger, A., and Deininger, S. O. (2004) Comparison of laser-induced dissociation and high-energy collision-induced dissociation using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) for peptide and protein identification. Rapid Commun. Mass Spectrom. 18, 2093–2105.CrossRefPubMedGoogle Scholar
  15. 15.
  16. 16.
    Drake, S. K., Bowen, R. A., Remaley, A. T., and Hortin, G. L. (2004) Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin. Chem. 50, 2398–2401.CrossRefPubMedGoogle Scholar
  17. 17.
    Schaub, S., Wilkins, J., Weiler, T., Sangster, K., Rush, D., and Nickerson, P. (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int. 65, 323–332.CrossRefPubMedGoogle Scholar
  18. 18.
    Drake, R. R., Cazares, L. H., Corica, A., Malik, G., Schwegler, E. E., Libby, A. E., Wright, G. L., Jr., Adam, B.-L., and Semmes, O. J. (2004) Quality control, preparation and protein stability issues for blood serum and plasma used in biomarker discovery and proteomic profiling assay. Bioprocessing J. 3, 45–50.Google Scholar
  19. 19.
    Hulmes, J. D., Bethea, D., Ho, K., Huang, S.-P., Ricci, D. L., Opiteck, G. J., and Hefta, S. A. (2004) An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin. Proteomics J. 1, 17–31.CrossRefGoogle Scholar
  20. 20.
    Hortin G. L. (2005) Can mass spectrometric protein profiling meet desired standards of clinical laboratory practice? Clin. Chem. 51, 3–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Semmes, O. J., Feng, Z., Adam, B. L., Banez, L. L., Bigbee, W. L., Campos, D., Cazares, L. H., Chan, D. W., Grizzle, W. E., Izbicka, E., Kagan, J., Malik, G., McLerran, D., Moul, J. W., Partin, A., Prasanna, P., Rosenzweig, J., Sokoll, L. J., Srivastava, S., Srivastava, S., Thompson, I., Welsh, M. J., White, N., Winget, M., Yasui, Y., Zhang, Z., and Zhu, L. (2005) Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin. Chem. 51, 102–112.CrossRefPubMedGoogle Scholar
  22. 22.
    Dekker, L. J., Dalebout, J. C., Siccama, I., Jenster, G., Sillevis Smitt, P. A., and Luider, T. M. (2005) A new method to analyze matrix-assisted laser desorption/ionization time-of-flight peptide profiling mass spectra. Rapid Commun. Mass Spectrom. 19, 865–870.CrossRefPubMedGoogle Scholar
  23. 23.
    List for concentration tolerances of buffers components for MALDI analysis using dried droplet method (http://w3.ouhsc.edu/biochem/sampleprep.htm).
  24. 24.
    Cohen, S. L. and Chait, B. T. (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68, 31–7.CrossRefPubMedGoogle Scholar
  25. 25.
  26. 26.
    Zhang, N. and Li, L. (2004) Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. Rapid Commun. Mass Spectrom. 18, 889–896.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu, Y. F., Lee, K. L., Tang, K., Allman, S. L., Taranenko, N. I., and Chen, C. H. (1995) R evisit of MALDI for small proteins. Rapid Commun. Mass Spectrom. 9, 1315–1320.CrossRefPubMedGoogle Scholar
  28. 28.
    Krause, E., Wenschuh, H., and Jungblut, P. R. (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 71, 4160–4165.CrossRefPubMedGoogle Scholar
  29. 29.
    Baumgart, S., Lindner, Y., Kuhne, R., Oberemm, A., Wenschuh, H., and Krause, E. (2004) The contributions of specific amino acid side chains to signal intensities of peptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 863–868.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sau-Mei Leung
    • 1
  • Rebecca L. Pitts
    • 1
  1. 1.Clinical ProteomicsBruker Daltonics, Inc.BillericaMA

Personalised recommendations