Advertisement

SNP Genotyping by Unlabeled Probe Melting Analysis

  • Maria Erali
  • Robert Palais
  • Carl Wittwer
Part of the Methods in Molecular Biology book series (MIMB, volume 429)

Abstract

Fluorescent nucleic acid detection in polymerase chain reaction (PCR) generally uses oligonucleotide probes labeled with covalently attached dyes. However, unlabeled oligonucleotides in the presence of saturating DNA dyes can also serve as hybridization probes. The DNA dye, LCGreen® Plus, and a 3′-blocked unlabeled probe are added before amplification, and asymmetric PCR is performed at a 1:5 to 1:10 primer ratio. After PCR is complete, fluorescent melting curves reveal both probe melting at low temperature and amplicon melting at high temperature. After background removal, the melting temperature(s) of the probe/target duplex specific to the allele(s) amplified are revealed. Probes between 20 and 40 bp with T ms between 50 and 85°C are effective. The method requires only three standard oligonucleotides and endpoint fluorescence melting. No real-time PCR or allele-specific amplification is needed. Unlabeled probes are inexpensive, provide the sequence specificity of probes, and allow simultaneous identification of multiple alleles by melting analysis.

Key Words

Unlabeled probes genotyping LCGreen Plus asymmetric PCR melting analysis. 

References

  1. 1.
    Herrmann, M. G., Durtschi, J. D., Bromley, L. K., Wittwer, C. T., and Voelkerding, K. V. (2006) DNA melting analysis for mutation scanning and genotyping: a cross platform comparison. Clin. Chem. 52, 494–503.CrossRefPubMedGoogle Scholar
  2. 2.
    Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154–160.CrossRefPubMedGoogle Scholar
  3. 3.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–131, 134–138.PubMedGoogle Scholar
  4. 4.
    Jobs, M., Howell, W. M., Stromqvist, L., Mayr, T., and Brookes, A. J. (2003) DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Res. 13, 916–924.CrossRefPubMedGoogle Scholar
  5. 5.
    Prince, J. A., Feuk, L., Howell, W. M., Jobs, M., Emahazion, T., Blennow, K., and Brookes, A. J. (2001) Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. Genome Res. 11, 152–162.CrossRefPubMedGoogle Scholar
  6. 6.
    Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G., and Pryor, R. J. (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou, L., Myers, A. N., Vandersteen, J. G., Wang, L., and Wittwer, C. T. (2004) Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin. Chem. 50, 1328–1335.CrossRefPubMedGoogle Scholar
  8. 8.
    Wittwer, C. T., Dujols, V. E., Reed, G., and Zhou, L. (2004) Amplicon melting analysis with saturation dyes. US Patent Application 2006-0019253 A1.Google Scholar
  9. 9.
    Zhou, L., Wang, L., Palais, R., Pryor, R., and Wittwer, C. T. (2005) High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin. Chem. 51, 1770–1777.CrossRefPubMedGoogle Scholar
  10. 10.
    Wittwer, C. T. and Kusukawa, N. (2004) Real-time PCR. Pages 71–84 in D. H. Persing, Tenover, F. C., Versalovic, J., Tang, Y. W., Unger, E. R., Relman, D. A., and White, T. J., eds. Diagnostic molecular microbiology; principles and applications. ASM Press, Washington DC.Google Scholar
  11. 11.
    Liew, M., Nelson, L., Margraf, R. L., et al (2006) Genotyping of human platelet antigens 1–6 &15 by high-resolution amplicon melting and conventional hybridization probes. J. Molec. Diagn. in press 8, 97–104.CrossRefGoogle Scholar
  12. 12.
    Liew, M., Pryor, R., Palais, R., et al. (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 50, 1156–1164.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, J., Chuang, K., Ahluwalia, M., et al. (2005) High-throughput SNP genotyping by single-tube PCR with T m-shift primers. Biotechniques 39, 885–893.CrossRefPubMedGoogle Scholar
  14. 14.
    Cradic, K. W., Wells, J. E., Allen, L., Kruckeberg, K. E., Singh, R. J., and Grebe, S. K. (2004) Substitution of 3′-phosphate cap with a carbon-based blocker reduces the possibility of fluorescence resonance energy transfer probe failure in real-time PCR assays. Clin. Chem. 50, 1080–1082.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou, L., Vandersteen, J., Wang, L., et al. (2004) High-resolution DNA melting curve analysis to establish HLA genotypic identity. Tissue Antigens 64, 156–164.CrossRefPubMedGoogle Scholar
  16. 16.
    Chou, L.-S., Meadows, C., Wittwer, C. T., and Lyon, E. (2005) Unlabeled oligonucleotide probes midified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. BioTechniques 39, 644–650.CrossRefPubMedGoogle Scholar
  17. 17.
    Margraf, R. L., Mao, R., and Wittwer, C. T. (2006) Masking selected sequence variation by incorporating mismatches into melting analysis probes. Human Mutation 27, 269–278.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Maria Erali
    • 1
  • Robert Palais
    • 2
  • Carl Wittwer
    • 2
  1. 1.Advanced Technology GroupInstitute for Clinical and Experimental Pathology, ARUP LaboratoriesSalt Lake City
  2. 2.Department of MathematicsUniversity of UtahSalt Lake City

Personalised recommendations