Transgenesis Techniques pp 245-263

Part of the Methods in Molecular Biology book series (MIMB, volume 561) | Cite as

Site-Specific Recombinases for Manipulation of the Mouse Genome

  • Marie-Christine Birling
  • Françoise Gofflot
  • Xavier Warot
Protocol

Summary

Site-specific recombination systems are widespread and popular tools for all scientists interested in manipulating the mouse genome. In this chapter, we focus on the use of site-specific recombinases (SSR) to unravel the function of genes of the mouse. In the first part, we review the most commonly used SSR, Cre and Flp, as well as the newly developed systems such as Dre and PhiC31, and we present the inducible SSR systems. As experience has shown that these systems are not as straightforward as expected, particular attention is paid to facts and artefacts associated with their production and applications to study the mouse genome. In the next part of this chapter, we illustrate new applications of SSRs that allow engineering of the mouse genome with more and more precision, including the FLEX and the RMCE strategies. We conclude and suggest a workflow procedure that can be followed when using SSR to create your mouse model of interest. Together, these strategies and procedures provide the basis for a wide variety of studies that will ultimately lead to the analysis of the function of a gene at the cellular level in the mouse.

Key words

Site-specific recombinases Conditional knockout Cre Flp PhiC31 Inducible systems FLEX RMCE Mouse model engineering 

References

  1. 1.
    Grindley, N.D., Whiteson, K.L. and Rice, P.A. (2006) Mechanisms of site-specific recombination. Annu Rev Biochem, 75, 567–605PubMedCrossRefGoogle Scholar
  2. 2.
    Sauer, B. and Henderson, N. (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A, 85, 5166–5170PubMedCrossRefGoogle Scholar
  3. 3.
    Metzger, D. and Chambon, P. (2001) Site- and time-specific gene targeting in the mouse. Methods, 24, 71–80PubMedCrossRefGoogle Scholar
  4. 4.
    Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis, 26, 99–109PubMedCrossRefGoogle Scholar
  5. 5.
    Branda, C.S. and Dymecki, S.M. (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell, 6, 7–28PubMedCrossRefGoogle Scholar
  6. 6.
    Sauer, B. and Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res, 17, 147–161PubMedCrossRefGoogle Scholar
  7. 7.
    Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265, 103–106PubMedCrossRefGoogle Scholar
  8. 8.
    Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder, K.L. and Westphal, H. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A, 89, 6232–6236PubMedCrossRefGoogle Scholar
  9. 9.
    Orban, P.C., Chui, D. and Marth, J.D. (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A, 89, 6861–6865PubMedCrossRefGoogle Scholar
  10. 10.
    Dupe, V., Davenne, M., Brocard, J., Dolle, P., Mark, M., Dierich, A., Chambon, P. and Rijli, F.M. (1997) In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development, 124, 399–410PubMedGoogle Scholar
  11. 11.
    Gaveriaux-Ruff, C. and Kieffer, B.L. (2007) Conditional gene targeting in the mouse nervous system: insights into brain function and diseases. Pharmacol Ther, 113, 619–634PubMedCrossRefGoogle Scholar
  12. 12.
    O’Gorman, S., Fox, D.T. and Wahl, G.M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251, 1351–1355PubMedCrossRefGoogle Scholar
  13. 13.
    Buchholz, F., Angrand, P.O. and Stewart, A.F. (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol, 16, 657–662PubMedCrossRefGoogle Scholar
  14. 14.
    Raymond, C.S. and Soriano, P. (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE, 2, e162PubMedCrossRefGoogle Scholar
  15. 15.
    Farley, F.W., Soriano, P., Steffen, L.S. and Dymecki, S.M. (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis, 28, 106–110PubMedCrossRefGoogle Scholar
  16. 16.
    Kanki, H., Suzuki, H. and Itohara, S. (2006) High-efficiency CAG-FLPe deleter mice in C57 BL/6J background. Exp Anim, 55, 137–141PubMedCrossRefGoogle Scholar
  17. 17.
    Rodriguez, C.I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F. and Dymecki, S.M. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet, 25, 139–140PubMedCrossRefGoogle Scholar
  18. 18.
    Sauer, B. and McDermott, J. (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res, 32, 6086–6095PubMedCrossRefGoogle Scholar
  19. 19.
    Thorpe, H.M. and Smith, M.C. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A, 95, 5505–5510PubMedCrossRefGoogle Scholar
  20. 20.
    Belteki, G., Gertsenstein, M., Ow, D.W. and Nagy, A. (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol, 21, 321–324PubMedCrossRefGoogle Scholar
  21. 21.
    Sclimenti, C.R., Thyagarajan, B. and Calos, M.P. (2001) Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res, 29, 5044–5051PubMedCrossRefGoogle Scholar
  22. 22.
    Andreas, S., Schwenk, F., Kuter-Luks, B., Faust, N. and Kuhn, R. (2002) Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res, 30, 2299–2306PubMedCrossRefGoogle Scholar
  23. 23.
    Kuhn, R., Schwenk, F., Aguet, M. and Rajewsky, K. (1995) Inducible gene targeting in mice. Science, 269, 1427–1429PubMedCrossRefGoogle Scholar
  24. 24.
    Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A, 89, 5547–5551PubMedCrossRefGoogle Scholar
  25. 25.
    Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat Rev Genet, 2, 743–755PubMedCrossRefGoogle Scholar
  26. 26.
    Saam, J.R. and Gordon, J.I. (1999) Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem, 274, 38071–38082PubMedCrossRefGoogle Scholar
  27. 27.
    St-Onge, L., Furth, P.A. and Gruss, P. (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res, 24, 3875–3877PubMedCrossRefGoogle Scholar
  28. 28.
    Utomo, A.R., Nikitin, A.Y. and Lee, W.H. (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol, 17, 1091–1096PubMedCrossRefGoogle Scholar
  29. 29.
    Brocard, J., Feil, R., Chambon, P. and Metzger, D. (1998) A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res, 26, 4086–4090PubMedCrossRefGoogle Scholar
  30. 30.
    Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D. and Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A, 93, 10887–10890PubMedCrossRefGoogle Scholar
  31. 31.
    Feil, R., Wagner, J., Metzger, D. and Chambon, P. (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun, 237, 752–757PubMedCrossRefGoogle Scholar
  32. 32.
    Kellendonk, C., Tronche, F., Casanova, E., Anlag, K., Opherk, C. and Schutz, G. (1999) Inducible site-specific recombination in the brain. J Mol Biol, 285, 175–182PubMedCrossRefGoogle Scholar
  33. 33.
    Kellendonk, C., Tronche, F., Monaghan, A.P., Angrand, P.O., Stewart, F. and Schutz, G. (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res, 24, 1404–1411PubMedCrossRefGoogle Scholar
  34. 34.
    Indra, A.K., Warot, X., Brocard, J., Bornert, J.M., Xiao, J.H., Chambon, P. and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res, 27, 4324–4327PubMedCrossRefGoogle Scholar
  35. 35.
    Feil, R. (2007) Conditional somatic mutagenesis in the mouse using site-specific recombinases. Handb Exp Pharmacol, 178, 3–28PubMedCrossRefGoogle Scholar
  36. 36.
    Hunter, N.L., Awatramani, R.B., Farley, F.W. and Dymecki, S.M. (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis, 41, 99–109PubMedCrossRefGoogle Scholar
  37. 37.
    Collins, F.S., Rossant, J. and Wurst, W. (2007) A mouse for all reasons. Cell, 128, 9–13PubMedCrossRefGoogle Scholar
  38. 38.
    Schwenk, F., Kuhn, R., Angrand, P.O., Rajewsky, K. and Stewart, A.F. (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res, 26, 1427–1432PubMedCrossRefGoogle Scholar
  39. 39.
    Vooijs, M., Jonkers, J. and Berns, A. (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep, 2, 292–297PubMedCrossRefGoogle Scholar
  40. 40.
    Thyagarajan, B., Guimaraes, M.J., Groth, A.C. and Calos, M.P. (2000) Mammalian genomes contain active recombinase recognition sites. Gene, 244, 47–54PubMedCrossRefGoogle Scholar
  41. 41.
    Forni, P.E., Scuoppo, C., Imayoshi, I., Taulli, R., Dastru, W., Sala, V., Betz, U.A., Muzzi, P., Martinuzzi, D., Vercelli, A.E. et al (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci, 26, 9593–9602PubMedCrossRefGoogle Scholar
  42. 42.
    Loonstra, A., Vooijs, M., Beverloo, H.B., Allak, B.A., van Drunen, E., Kanaar, R., Berns, A. and Jonkers, J. (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A, 98, 9209–9214PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S. and Capecchi, M.R. (2000) Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A, 97, 13702–13707PubMedCrossRefGoogle Scholar
  44. 44.
    Furr, B.J. and Jordan, V.C. (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther, 25, 127–205PubMedCrossRefGoogle Scholar
  45. 45.
    Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. and McMahon, A.P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol, 8, 1323–1326PubMedCrossRefGoogle Scholar
  46. 46.
    Vasioukhin, V., Degenstein, L., Wise, B. and Fuchs, E. (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A, 96, 8551–8556PubMedCrossRefGoogle Scholar
  47. 47.
    Brocard, J., Warot, X., Wendling, O., Messaddeq, N., Vonesch, J.L., Chambon, P. and Metzger, D. (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci U S A, 94, 14559–14563PubMedCrossRefGoogle Scholar
  48. 48.
    Schuler, M., Dierich, A., Chambon, P. and Metzger, D. (2004) Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis, 39, 167–172PubMedCrossRefGoogle Scholar
  49. 49.
    Mataki, C., Magnier, B.C., Houten, S.M., Annicotte, J.S., Argmann, C., Thomas, C., Overmars, H., Kulik, W., Metzger, D., Auwerx, J. et al (2007) Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Biol, 27, 8330–8339PubMedCrossRefGoogle Scholar
  50. 50.
    Schnutgen, F., Doerflinger, N., Calleja, C., Wendling, O., Chambon, P. and Ghyselinck, N.B. (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol, 21, 562–565PubMedCrossRefGoogle Scholar
  51. 51.
    Schnutgen, F. and Ghyselinck, N.B. (2007) Adopting the good reFLEXes when generating conditional alterations in the mouse genome. Transgenic Res, 16, 405–413PubMedCrossRefGoogle Scholar
  52. 52.
    Schnutgen, F., De-Zolt, S., Van Sloun, P., Hollatz, M., Floss, T., Hansen, J., Altschmied, J., Seisenberger, C., Ghyselinck, N.B., Ruiz, P. et al (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A, 102, 7221–7226PubMedCrossRefGoogle Scholar
  53. 53.
    Wirth, D., Gama-Norton, L., Riemer, P., Sandhu, U., Schucht, R. and Hauser, H. (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol, 18, 411–419PubMedCrossRefGoogle Scholar
  54. 54.
    Coroadinha, A.S., Schucht, R., Gama-Norton, L., Wirth, D., Hauser, H. and Carrondo, M.J. (2006) The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J Biotechnol, 124, 457–468PubMedCrossRefGoogle Scholar
  55. 55.
    Schucht, R., Coroadinha, A.S., Zanta-Boussif, M.A., Verhoeyen, E., Carrondo, M.J., Hauser, H. and Wirth, D. (2006) A new generation of retroviral producer cells: predictable and stable virus production by Flp-mediated site-specific integration of retroviral vectors. Mol Ther, 14, 285–292PubMedCrossRefGoogle Scholar
  56. 56.
    Toledo, F., Liu, C.W., Lee, C.J. and Wahl, G.M. (2006) RMCE-ASAP: a gene targeting method for ES and somatic cells to accelerate phenotype analyses. Nucleic Acids Res, 34, e92PubMedCrossRefGoogle Scholar
  57. 57.
    Seibler, J., Kleinridders, A., Kuter-Luks, B., Niehaves, S., Bruning, J.C. and Schwenk, F. (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res, 35, e54PubMedCrossRefGoogle Scholar
  58. 58.
    Seibler, J., Kuter-Luks, B., Kern, H., Streu, S., Plum, L., Mauer, J., Kuhn, R., Bruning, J.C. and Schwenk, F. (2005) Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res, 33, e67PubMedCrossRefGoogle Scholar
  59. 59.
    Torres, R.M. and Kühn, R. (1997) In: Torres, R.M. and Kühn, R. (eds.), Laboratory protocols for conditional gene targeting. Oxford University Press, Oxford, pp. 167Google Scholar
  60. 60.
    Metzger, D., Clifford, J., Chiba, H. and Chambon, P. (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A, 92, 6991–6995PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang, Y., Riesterer, C., Ayrall, A.M., Sablitzky, F., Littlewood, T.D. and Reth, M. (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res, 24, 543–548PubMedCrossRefGoogle Scholar
  62. 62.
    Logie, C. and Stewart, A.F. (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A, 92, 5940–5944PubMedCrossRefGoogle Scholar
  63. 63.
    Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G. and Evan, G.I. (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res, 23, 1686–1690PubMedCrossRefGoogle Scholar
  64. Weber, P., Metzger, D. and Chambon, P. Temporally controlled targeted somatic mutagenesis in the mouse brain. European Journal of Neuroscience, 14, 1777–1783Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marie-Christine Birling
    • 1
  • Françoise Gofflot
    • 1
  • Xavier Warot
    • 1
  1. 1.Institut Clinique de la Souris – Mouse Clinical Institute (ICS-MCI)Illkirch CedexFrance

Personalised recommendations