Advertisement

Apoptosis pp 95-103 | Cite as

Detection of Cell Death by Autophagy

  • Narasimman Gurusamy
  • Dipak K. Das
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 559)

Summary

Autophagy (Greek: Self digestion) is an intracellular process involved in removal of damaged or misfolded proteins or organelles. Damaged or misfolded proteins or organelles are first engulfed in a membraneous structure called autophagosome, and then the autophagosome fuse with lysosome to form autophagolysosome, where the contents are digested. Autophagy is a catabolic process induced during nutritional depletion via phosphatidylinositol 3 kinase pathway. Autophagy is induced in several diseases such as various cancers, heart failure, etc. When autophagy is induced, several autophagic genes are upregulated that help the formation of autophagosome. Several autophagosome specific marker proteins have been identified, among them MAP1LC3-II protein, which is cleaved from MAP1LC3-I, is specifically incorporated into the autophagosomal membrane. The formation of MAP1LC3-II can be analyzed by Western immunoblotting or immunofluorescence. Detailed methods of detection of MAP1LC3-II by Western immunoblotting and immunofluorescence are described.

Key words

Autophagy LC3 Autophagosome 

References

  1. 1.
    Cuervo A. M. (2004). Autophagy: many paths to the same end. Mol. Cell. Biochem. 263, 55–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Klionsky D. J. and Emr S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Huang J., Klionsky D. J. (2007). Autophagy and human disease. Cell Cycle. 6, 1837–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Takagi H., Matsui Y., Sadoshima J. (2007). The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid. Redox. Signal. 9, 1373–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Shintani T., Klionsky D. J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Ravikumar B., Vacher C., Berger Z., Davies J. E., Luo S., Oroz L. G., Scaravilli F., Easton D. F., Duden R., O’Kane C. J., Rubinsztein D. C. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Xue L., Fletcher G. C., Tolkovsky A. M. (2001). Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases ­during apoptosis. Curr. Biol. 11, 361–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Cuervo A. M., Dice J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Petiot A., Ogier-Denis E., Blommaart E. F., Meijer A. J., Codogno P. (2000). Distinct classes of phosphatidylinositol 3’′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Klionsky D. J., Cregg J. M., Dunn W. A., Jr., Emr S. D., Sakai Y., Sandoval I. V., Sibirny A., Subramani S., Thumm M., Veenhuis M., Ohsumi Y. (2003). A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuma A., Mizushima N., Ishihara N., Ohsumi Y. (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Tanida I., Ueno T., Kominami E. (2004). LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Kirisako T., Ichimura Y., Okada H., Kabeya Y., Mizushima N., Yoshimori T., Ohsumi M., Takao T., Noda T., Ohsumi Y. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Mizushima N., Yamamoto A., Hatano M., Kobayashi Y., Kabeya Y., Suzuki K., Tokuhisa T., Ohsumi Y., Yoshimori T. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizushima N. (2004). Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Biederbick A., Kern H. F., Elsasser H. P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol. 66, 3–14.PubMedGoogle Scholar
  17. 17.
    Dice J. F. (2007). Chaperone-mediated autophagy. Autophagy 3y, 295–9.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Narasimman Gurusamy
    • 1
  • Dipak K. Das
    • 1
  1. 1.Cardiovascular Research CenterUniversity of Connecticut, School of MedicineFarmingtonUSA

Personalised recommendations