Advertisement

Apoptosis pp 335-342 | Cite as

Reliable Method for Detection of Programmed Cell Death in Yeast

  • Xinchen Teng
  • J. Marie HardwickEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 559)

Summary

Accumulating evidence suggests that yeasts are capable of undergoing programmed cell death (PCD) to benefit long-term survival of the species, and that yeast and mammals may share at least partially conserved PCD pathways. In our experience, mammalian apoptosis assays have not been readily applicable to yeast. Therefore, to take advantage of yeast as a genetic tool to study PCD, we developed a yeast cell death assay that can reliably reveal viability differences between wild-type strains and strains lacking the mitochondrial fission genes DNM1/Drp1 and FIS1, orthologs of mammalian cell death regulators. Cell viability following treatment with acetic acid is quantified by colony formation and vital dye (FUN1) staining to reproducibly detect dose-dependent, genetically programmed yeast cell death.

Key words

Yeast Programmed cell death Apoptosis Fis1 Dnm1 Acetic acid Colony forming assay FUN1, Mitochondria, Fission 

Notes

Acknowledgments

The authors would like to thank Drs. Wen-Chih Cheng and Yihru Fannjiang who first developed this acetic acid-induced cell death assay for yeast. This work was supported by NIH grant RO1 GM077875.

References

  1. 1.
    Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. The Journal of Cell Biology 166, 1055–1067.PubMedCrossRefGoogle Scholar
  2. 2.
    Severin, F. F., and Hyman, A. A. (2002). Pheromone induces programmed cell death in S. cerevisiae. Current Biology 12, R233–R235.PubMedCrossRefGoogle Scholar
  3. 3.
    Ivanovska, I., and Hardwick, J. M. (2005) Viruses activate a genetically conserved cell death pathway in a unicellular organism. The Journal of Cell Biology 170, 391–399.PubMedCrossRefGoogle Scholar
  4. 4.
    Vachova, L., and Palkova, Z. (2005). Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. The Journal of Cell Biology 169, 711–717.PubMedCrossRefGoogle Scholar
  5. 5.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26, 239–257.PubMedCrossRefGoogle Scholar
  6. 6.
    Manon, S., Chaudhuri, B., and Guerin, M. (1997). Release of cytochrome c and decrease of cytochrome c oxidase in bax-expressing yeast cells, and prevention of these effects by coexpression of bcl-xL. FEBS Letters 415, 29–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Priault, M., Camougrand, N., Kinnally, K. W., Vallette, F. M., and Manon, S. (2003). Yeast as a tool to study bax/mitochondrial interactions in cell death. FEMS Yeast Research 4, 15–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T., and Bredesen, D. E. (1993). Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262, 1274–1277.PubMedCrossRefGoogle Scholar
  9. 9.
    Fannjiang, Y., Cheng, W. C., Lee, S. J., Qi, B., Pevsner, J., McCaffery, J. M., Hill, R. B., Basanez, G., and Hardwick, J. M. (2004). Mitochondrial fission proteins regulate programmed cell death in yeast. Genes and Development 18, 2785–2797.PubMedCrossRefGoogle Scholar
  10. 10.
    Vander Heiden, M. G., Choy, J. S., VanderWeele, D. J., Brace, J. L., Harris, M. H., Bauer, D. E., Prange, B., Kron, S. J., Thompson, C. B., and Rudin, C. M. (2002). Bcl-x(L) complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism. The Journal of Biological Chemistry 277, 44870–44876.PubMedCrossRefGoogle Scholar
  11. 11.
    Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S. J., Wesselborg, S., and Frohlich, K.U. (2002). A caspase-related protease regulates apoptosis in yeast. Molecular Cell 9, 911–917.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoon, H. J., and Carbon, J. (1999). Participation of bir1p, a member of the inhibitor of apoptosis family, in yeast chromosome segregation events. Proceedings of the National Academy of Science of the United States of America 96, 13208–13213.CrossRefGoogle Scholar
  13. 13.
    Fahrenkrog, B., Sauder, U., and Aebi, U. (2004) The S. cerevisiae htra-like protein nma111p is a nuclear serine protease that mediates yeast apoptosis. The Journal of Cell Science 117, 115–126.CrossRefGoogle Scholar
  14. 14.
    Wissing, S., Ludovico, P., Herker, E., Buttner, S., Engelhardt, S. M., Decker, T., Link, A., Proksch, A., Rodrigues, F., Corte-Real, M., Frohlich, K. U., Manns, J., Cande, C., Sigrist, S. J., Kroemer, G., and Madeo, F. (2004). An aif orthologue regulates apoptosis in yeast. The Journal of Cell Biology 166, 969–974.PubMedCrossRefGoogle Scholar
  15. 15.
    Hardwick, J. M., and Cheng, W. C. (2004). Mitochondrial programmed cell death pathways in yeast. Developmental Cell 7, 630–632.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheng, W. C., Leach, K. M., and Hardwick, J. M. (2008). Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta 1783, 1272–1279.PubMedCrossRefGoogle Scholar
  17. 17.
    Ludovico, P., Rodrigues, F., Almeida, A., Silva, M. T., Barrientos, A., and Corte-Real, M. (2002). Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Molecular Biology of the Cell 13, 2598–2606.PubMedCrossRefGoogle Scholar
  18. 18.
    Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell 1, 515–525.PubMedCrossRefGoogle Scholar
  19. 19.
    Goyal, G., Fell, B., Sarin, A., Youle, R.J. and Sriram, V. (2007). Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Developental Cell 12, 807–816.Google Scholar
  20. 20.
    Jagasia, R., Grote, P., Westermann, B., and Conradt, B. (2005). Drp-1-mediated mitochondrial fragmentation during egl-1-induced cell death in C. elegans. Nature 433, 754–760.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng, W. C., Teng, X., Park, H. K., Tucker, C. M., Dunham, M. J., and Hardwick, J. M.(2008) Deletion of mitochondrial fission gene Fis1 deficiency selects for a compensatory mutations responsible for cell death and growth control defects Cell Death and Differentiation 15, 1838–1846. .Google Scholar
  22. 22.
    Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H., and Frohlich, K. U. (1999). Oxygen stress: A regulator of apoptosis in yeast. The Journal of Cell Biology 145, 757–767.PubMedCrossRefGoogle Scholar
  23. 23.
    Ludovico, P., Sansonetty, F., and Corte-Real, M. (2001). Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology (Reading England) 147, 3335–3343.Google Scholar
  24. 24.
    Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C., and Corte-Real, M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology (Reading England) 147, 2409–2415.Google Scholar
  25. 25.
    Huh, G. H., Damsz, B., Matsumoto, T. K., Reddy, M. P., Rus, A. M., Ibeas, J. I., Narasimhan, M. L., Bressan, R. A., and Hasegawa, P. M. (2002). Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29, 649–659.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng, E. H., Levine, B., Boise, L. H., Thompson, C. B., and Hardwick, J. M. (1996). Bax-independent inhibition of apoptosis by bcl-xl. Nature 379, 554–556.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., Ueno, K., and Hardwick, J. M. (1997). Conversion of bcl-2 to a bax-like death effector by caspases. Science 278, 1966–1968.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmacology and Molecular SciencesJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations