Advertisement

Apoptosis pp 191-204 | Cite as

Regulation of Apoptosis by the Unfolded Protein Response

  • Andrew Fribley
  • Kezhong Zhang
  • Randal J. KaufmanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 559)

Summary

In eukaryotic cells, the endoplasmic reticulum (ER) serves many specialized functions including bio-synthesis and assembly of membrane and secretory proteins, calcium storage and production of lipids and sterols. As a plant for protein folding and posttranslational modification, the ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. Biochemical, physiological, and pathological stimuli that interfere with ER function can disrupt ER homeostasis, impose stress to the ER, and subsequently cause accumulation of unfolded or misfolded proteins in the ER lumen. To deal with accumulation of unfolded or misfolded proteins, the cell has evolved highly specific signaling pathways collectively called the “unfolded protein response” (UPR) to restore normal ER functions. However, if the overload of unfolded or misfolded proteins in the ER is not resolved, the prolonged UPR will induce ER stress-associated programmed cell death, apoptosis, to protect the organism by removing the stressed cells. In this chapter, we summarize our current understanding of UPR-induced apoptosis and various methods to detect ER stress and apoptosis in mammalian cells.

Key words

Apoptosis Endoplasmic Reticulum Stress Unfolded Protein Response 

Notes

Acknowledgments

Portions of this work were supported by NIH grants DK042394, HL052173, and HL057346. RJK is an Investigator of the Howard Hughes Medical Institute.

References

  1. 1.
    Kaufman, R. J. (2002). Orchestrating the unfolded protein response in health and disease. J Clin Invest 110, 1389–1398PubMedGoogle Scholar
  2. 2.
    Mori, K. (2000). Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454PubMedCrossRefGoogle Scholar
  3. 3.
    Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519–529PubMedCrossRefGoogle Scholar
  4. 4.
    Schroder, M., and Kaufman, R. J. (2005). The Mammalian unfolded protein response. Annu Rev Biochem 74, 739–789PubMedCrossRefGoogle Scholar
  5. 5.
    Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897–904PubMedCrossRefGoogle Scholar
  6. 6.
    Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7, 1165–1176PubMedCrossRefGoogle Scholar
  7. 7.
    Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., et al (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619–633PubMedCrossRefGoogle Scholar
  8. 8.
    Fribley, A. M., Evenchik, B., Zeng, Q., Park, B. K., Guan, J. Y., Zhang, H., et al (2006). Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281, 31440–31447PubMedCrossRefGoogle Scholar
  9. 9.
    Ron, D., and Habener, J. F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant- negative inhibitor of gene transcription. Genes Dev 6, 439–453PubMedCrossRefGoogle Scholar
  10. 10.
    Matsumoto, M., Minami, M., Takeda, K., Sakao, Y., and Akira, S. (1996). Ectopic expression of CHOP (GADD153). induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 395, 143–147PubMedCrossRefGoogle Scholar
  11. 11.
    McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 1249–1259PubMedCrossRefGoogle Scholar
  12. 12.
    Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and Hayashi, H. (2005). TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24, 1243–1255PubMedCrossRefGoogle Scholar
  13. 13.
    Sok, J., Wang, X. Z., Batchvarova, N., Kuroda, M., Harding, H., and Ron, D. (1999). CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 19, 495–504PubMedGoogle Scholar
  14. 14.
    Yamaguchi, H., and Wang, H. G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279, 45495–45502PubMedCrossRefGoogle Scholar
  15. 15.
    Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., et al (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12, 982–995PubMedCrossRefGoogle Scholar
  16. 16.
    Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., et al (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066–3077PubMedCrossRefGoogle Scholar
  17. 17.
    Wu, J., Rutkowski, D. T., Dubois, M., Swathirajan, J., Saunders, T., Wang, J., et al (2007). ATF6alpha optimizes long-term endo-plasmic reticulum function to protect cells from chronic stress. Dev Cell 13, 351–364PubMedCrossRefGoogle Scholar
  18. 18.
    Tirasophon, W., Welihinda, A. A., and Kaufman, R. J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p). in mammalian cells. Genes Dev 12, 1812–1824PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, X. Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M., Kuroda, M., and Ron, D. (1998). Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17, 5708–5717PubMedCrossRefGoogle Scholar
  20. 20.
    Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23, 7448–7459PubMedCrossRefGoogle Scholar
  22. 22.
    Shen, X., Ellis, R. E., Lee, K., Liu, C. Y., Yang, K., Solomon, A., et al (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.PubMedCrossRefGoogle Scholar
  24. 24.
    Urano, F., Bertolotti, A., and Ron, D. (2000). IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113, 3697–3702.PubMedGoogle Scholar
  25. 25.
    Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., et al (2001). Activation of caspase-12, an endoplastic reticulum (ER). resident caspase, through tumor necrosis factor receptor-associated factor 2- dependent mechanism in response to the ER stress. J Biol Chem 276, 13935–13940.PubMedGoogle Scholar
  26. 26.
    Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., et al (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389–395PubMedCrossRefGoogle Scholar
  27. 27.
    Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., et al (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16, 1345–1355PubMedCrossRefGoogle Scholar
  28. 28.
    Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252PubMedCrossRefGoogle Scholar
  29. 29.
    Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B., et al (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572–576PubMedCrossRefGoogle Scholar
  30. 30.
    Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., et al (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666PubMedCrossRefGoogle Scholar
  31. 31.
    Gunn, K. E., Gifford, N. M., Mori, K., and Brewer, J. W. (2004). A role for the unfolded protein response in optimizing antibody secretion. Mol Immunol 41, 919–927PubMedCrossRefGoogle Scholar
  32. 32.
    Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., et al (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59–69PubMedCrossRefGoogle Scholar
  33. 33.
    Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53, 4701–4714PubMedGoogle Scholar
  34. 34.
    Nakagawa, T., and Yuan, J. (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887–894PubMedCrossRefGoogle Scholar
  35. 35.
    Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., et al (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276, 33869–33874PubMedCrossRefGoogle Scholar
  36. 36.
    Tan, Y., Dourdin, N., Wu, C., De Veyra, T., Elce, J. S., and Greer, P. A. (2006). Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281, 16016–16024PubMedCrossRefGoogle Scholar
  37. 37.
    Saleh, M., Mathison, J. C., Wolinski, M. K., Bensinger, S. J., Fitzgerald, P., Droin, N., et al (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068PubMedCrossRefGoogle Scholar
  38. 38.
    Fischer, H., Koenig, U., Eckhart, L., and Tschachler, E. (2002). Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293, 722–726PubMedCrossRefGoogle Scholar
  39. 39.
    Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2)., 233–249PubMedCrossRefGoogle Scholar
  40. 40.
    Feng, B., Yao, P. M., Li, Y., Devlin, C. M., Zhang, D., Harding, H. P., et al (2003). The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5, 781–792PubMedCrossRefGoogle Scholar
  41. 41.
    Harding, H. P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., et al (2001). Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7, 1153–1163PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou, J., Lhotak, S., Hilditch, B. A., and Austin, R. C. (2005). Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821PubMedCrossRefGoogle Scholar
  43. 43.
    Fribley, A., Zeng, Q., and Wang, C. Y. (2004). Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24, 9695–9704PubMedCrossRefGoogle Scholar
  44. 44.
    Schwartzman, R. A., and Cidlowski, J. A. (1993). Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14, 133–151PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrew Fribley
    • 1
  • Kezhong Zhang
    • 1
    • 2
  • Randal J. Kaufman
    • 1
    Email author
  1. 1.Department of Biological ChemistryThe University of Michigan Medical CenterAnn ArborUSA
  2. 2.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA

Personalised recommendations