Directed Gene Silencing with Artificial MicroRNAs

  • Rebecca Schwab
  • Stephan Ossowski
  • Norman Warthmann
  • Detlef Weigel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 592)

Abstract

The characterization of gene function typically includes a detailed analysis of loss-of-function alleles. In model plants, such as Arabidopsis thaliana and rice, sequence-indexed insertion collections provide a large resource of potential null alleles that can often be easily accessed through convenient Web sites (e.g., http://signal.salk.edu). They are, however, not available for nonmodel species, require stacking for knockout of redundant homologs, and do not easily allow for partial or regulated loss of gene function, which is particularly useful when null alleles are lethal. Transgene approaches that employ directed gene silencing can substitute for null alleles and also enable refined studies of gene function, e.g., by tissue-specific and inducible gene-silencing.

This chapter describes the generation and application of artificial microRNAs (amiRNAs) as a gene silencing tool in a wide variety of different plant species.

Key words

Gene silencing miRNA Hairpin Loss-of-function Phenotypic complementation 

References

  1. 1.
    Chapman EJ, Carrington JC (2007) Specia­lization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896CrossRefPubMedGoogle Scholar
  2. 2.
    Tang G, Galili G, Zhuang X (2007) RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering. Metabolomics 3:357–369CrossRefGoogle Scholar
  3. 3.
    Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221CrossRefPubMedGoogle Scholar
  4. 4.
    Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133CrossRefPubMedGoogle Scholar
  5. 5.
    Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527CrossRefPubMedGoogle Scholar
  6. 6.
    Ossowski O, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690CrossRefPubMedGoogle Scholar
  7. 7.
    Vaucheret H (2005) MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005:pe43CrossRefPubMedGoogle Scholar
  8. 8.
    Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151CrossRefPubMedGoogle Scholar
  9. 9.
    Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428CrossRefPubMedGoogle Scholar
  10. 10.
    Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242CrossRefPubMedGoogle Scholar
  11. 11.
    Qu J, Ye J, Fang R (2007) Artificial miRNA-mediated virus resistance in plants. J Virol 81(12):6690–6699CrossRefPubMedGoogle Scholar
  12. 12.
    Warthmann N, Chen H, Ossowski O, Weigel D, Hervé P. Highly Specific Gene Silencing by Artificial miRNAs in Rice. submitted.Google Scholar
  13. 13.
    Michniewicz M, Zago MK, Abas L et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056CrossRefPubMedGoogle Scholar
  14. 14.
    Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263CrossRefPubMedGoogle Scholar
  15. 15.
    Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2:53–86CrossRefGoogle Scholar
  16. 16.
    Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111CrossRefPubMedGoogle Scholar
  17. 17.
    Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  18. 18.
    Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2006) RNA-directed DNA methylation and pol IVb in Arabidopsis. Cold Spring Harb Symp Quant Biol 71:449–459CrossRefPubMedGoogle Scholar
  19. 19.
    Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112CrossRefPubMedGoogle Scholar
  20. 20.
    Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182CrossRefPubMedGoogle Scholar
  21. 21.
    Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741CrossRefPubMedGoogle Scholar
  22. 22.
    Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025CrossRefPubMedGoogle Scholar
  23. 23.
    Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693CrossRefPubMedGoogle Scholar
  24. 24.
    Tao Zhao, Wei Wang, Xue Bai and Yijun Qi; Gene silencing by artificial microRNAs in Chlamydomonas; The plant Journal, 2009Google Scholar
  25. 25.
    Attila Molnar, Andrew Bassett, Eva Thuenemann, Frank Schwach, Shantanu Karkare, Stephan Ossowski, Detlef Weigel and David Baulcombe; Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii; The Plant Journal, 2009Google Scholar
  26. 26.
    Basel Khraiwesh, Stephan Ossowski, Detlef Weigel, Ralf Reski, and Wolfgang Frank; Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. The Plant Journal, 2008.Google Scholar
  27. 27.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O, Widespread translational inhibition by plant miRNAs and siRNAs., Science. 2008 May 30;320(5880):1185–90Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rebecca Schwab
    • 1
  • Stephan Ossowski
    • 2
  • Norman Warthmann
    • 2
  • Detlef Weigel
    • 2
  1. 1.Institut de Biologie Moléculaire des Plantes (CNRS)StrasbourgFrance
  2. 2.Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations