Advertisement

Transient Assays for the Analysis of miRNA Processing and Function

  • Felipe F. de Felippes
  • Detlef Weigel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 592)

Abstract

Transient assays provide a convenient alternative to stable transformation. For small RNA analysis in plants, the most widely used method, commonly named agroinfiltration, makes use of Agrobacterium tumefaciens to deliver transgenes into leaf cells of Nicotiana benthamiana. Compared to the generation of stably transformed plants, agroinfiltration is more rapid, and samples can be analyzed a few days after inoculation. Agroinfiltration has been used successfully in many different applications, including the analysis of small RNAs. We describe here a protocol for analysis of miRNA processing using agroinfiltration of N. benthamiana leaves.

Key words

Agroinfiltration Transient assay miRNA processing Small RNA blot 

Notes

Acknowledgments

We would like to thank Dr. Jia-Wei Wang for discussion and Heike Wollmann for discussion and suggestions in the preparation of this chapter. FFF is supported by DAAD. Work on small RNAs in the Weigel laboratory is supported by European Community FP6 IP SIROCCO (contract LSHG-CT-2006-037900) and by the Max Planck Society.

References

  1. 1.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  2. 2.
    Chung MH, Chen MK, Pan SM (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res 9:471–476CrossRefPubMedGoogle Scholar
  3. 3.
    Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533CrossRefPubMedGoogle Scholar
  4. 4.
    Usharani KS, Periasamy M, Malathi VG (2006) Studies on the activity of a bidirectional promoter of Mungbean yellow mosaic India virus by agroinfiltration. Virus Res 119:154–162CrossRefPubMedGoogle Scholar
  5. 5.
    Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551CrossRefPubMedGoogle Scholar
  6. 6.
    Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17(18):1609–1614CrossRefPubMedGoogle Scholar
  7. 7.
    Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P, Ziegler-Graff V (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci U S A 103:1994–1999CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826CrossRefPubMedGoogle Scholar
  9. 9.
    Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273CrossRefPubMedGoogle Scholar
  10. 10.
    Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci U S A 97:13401–13406CrossRefPubMedGoogle Scholar
  11. 11.
    Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53:289–298PubMedGoogle Scholar
  12. 12.
    Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154PubMedGoogle Scholar
  13. 13.
    Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37 table of contentsCrossRefPubMedGoogle Scholar
  14. 14.
    Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832CrossRefPubMedGoogle Scholar
  15. 15.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795CrossRefPubMedGoogle Scholar
  16. 16.
    Sambrook J, Russell DW (eds) (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  17. 17.
    Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263CrossRefPubMedGoogle Scholar
  18. 18.
    Weigel D, Glazebrook J (eds) (2002) Arabid­opsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  19. 19.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedGoogle Scholar
  20. 20.
    Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Felipe F. de Felippes
    • 1
  • Detlef Weigel
    • 1
  1. 1.Max Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations