Drosophila pp 155-174 | Cite as

Methods for Homologous Recombination in Drosophila

  • Keith A. Maggert
  • Wei J. Gong
  • Kent G. Golic
Part of the Methods in Molecular Biology book series (MIMB, volume 420)


We present detailed protocols for two methods of gene targeting in Drosophila. The first, ends-out targeting, is identical in concept to gene replacement techniques used routinely in mammalian and yeast cells. In Drosophila, the targeted gene is replaced by the marker gene white + (although options exist to generate unmarked targeted alleles). This approach is simple in both the molecular cloning and the genetic manipulations. Ends-out will likely serve most investigators’ purposes to generate simple gene deletions or reporter gene “knock-ins.”

The second method, ends-in targeting, targets a wild-type gene with an engineered mutated copy and generates a duplication structure at the target locus. This duplication can subsequently be reduced to one copy, removing the wild-type gene and leaving only the introduced mutation. Although more complicated in the cloning and genetic manipulations (see Note 1), this approach has the benefit that the mutations may be introduced with no other remnant of the targeting procedure. This “surgical” approach will appeal to investigators who desire minimal perturbation to the genome, such as single nucleotide mutation.

Although both approaches appear to be approximately equally efficient (see Note 2), each method has separate strengths and drawbacks. The choice of which approach is best depends on the researcher’s goal.

Key Words

Ends-in ends-out gene targeting homologous recombination mutation replacement 


  1. 1.
    Beall, E. L., Bell, M., Georlette, D., and Botchan, M. R. (2004) Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev. 18, 1667–1680.CrossRefPubMedGoogle Scholar
  2. 2.
    Bi, X., Wei, S. C., and Rong, Y. S. (2004) Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr. Biol. 14, 1348–1353.CrossRefPubMedGoogle Scholar
  3. 3.
    Brankatschk, M. and Dickson, B. J. (2006) Netrins guide Drosophila commissural axons at short range. Nat. Neurosci. 9, 188–194.CrossRefPubMedGoogle Scholar
  4. 4.
    Donaldson, T. D., Noureddine, M. A., Reynolds, P. J., Bradford, W., and Duronio, R. J. (2004) Targeted disruption of Drosophila Roc1b reveals functional differences in the Roc subunit of Cullin-dependent E3 ubiquitin ligases. Mol. Cell Biol. 15, 4892–4903.CrossRefGoogle Scholar
  5. 5.
    Demir, E. and Dickson, B. J. (2005) fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794.CrossRefPubMedGoogle Scholar
  6. 6.
    Egli, D., Yepiskoposyan, H., Selvaraj, A., et al. (2006) A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol. Cell Biol. 26, 2286–2296.CrossRefPubMedGoogle Scholar
  7. 7.
    Elmore, T., Ignell, R., Carlson, J. R., and Smith, D. P. (2003) Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 23, 9906–9912.PubMedGoogle Scholar
  8. 8.
    Funk, N., Becker, S., Huber, S., Brunner, M., and Buchner, E. (2004) Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile. BMC Neurosci. 5, 16.CrossRefPubMedGoogle Scholar
  9. 9.
    Gao, Z., Joseph, E., Ruden, D. M., and Lu, X. (2004) Drosophila Pkd2 is haploid-insufficient for mediating optimal smooth muscle contractility. J. Biol. Chem. 279, 14,225–14,231.CrossRefPubMedGoogle Scholar
  10. 10.
    Greenberg, A. J., Moran, J. R., Coyne, J. A., and Wu, C. I. (2003) Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302, 1754–1757.CrossRefPubMedGoogle Scholar
  11. 11.
    Haines, N. and Irvine, K. D. (2005) Functional analysis of Drosophila beta1,4-Nacetlygalactosaminyltransferases. Glycobiology 15, 335–346.CrossRefPubMedGoogle Scholar
  12. 12.
    Han, Z., Li, X., Wu, J., and Olson, E. N. (2004) A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proc. Acad. Sci. USA 101, 12,567–12,572.CrossRefGoogle Scholar
  13. 13.
    Han, Z., Peng, Y., Li, X., and Olson, E. N. (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133, 1175–1182.CrossRefPubMedGoogle Scholar
  14. 14.
    Hirosawa-takamori, M., Chung, H. R., and Jackle, H. (2004) Conserved selenoprotein synthesis is not critical for oxidative stress defence and the lifespan of Drosophila. EMBO Rep. 5, 317–322.CrossRefPubMedGoogle Scholar
  15. 15.
    Hittinger, C. T., Stern, D. L., and Carroll, S. B. (2005) Pleiotropic functions of a conserved insect-specific Hox peptide motif. Development 132, 5261–5270.CrossRefPubMedGoogle Scholar
  16. 16.
    Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the Drosophila homolog of YAP. Cell 122, 421–434.CrossRefPubMedGoogle Scholar
  17. 17.
    Klymenko, T., Papp, B., Fischle, W., et al. (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122.CrossRefPubMedGoogle Scholar
  18. 18.
    LaLonde, M. M., Janssens, H., Rosenbaum, E., et al. (2005) Regulation of phototransduction responsiveness and retinal degeneration by a phospholipase D-generated signaling lipid. J. Cell Biol. 169, 471–479.CrossRefGoogle Scholar
  19. 19.
    Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., and Vosshall, L. B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, H. and Kubli, E. (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100, 9929–9933.CrossRefPubMedGoogle Scholar
  21. 21.
    Manoli, D. S., Foss, M., Villella, A., Taylor, B. J., Hall, J. C., and Baker, B. S. (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400.PubMedGoogle Scholar
  22. 22.
    O’Keefe, L. V., Liu, Y., Perkins, A., Dayan, S., Saint, R., and Richards, R. I. (2005) FRA16D common chromosomal fragile site oxido-reductase (FOR/WWOX) protects against the effects of ionizing radiation in Drosophila. Oncogene 24, 6590–6596.PubMedGoogle Scholar
  23. 23.
    Radford, S. J., Goley, E., Baxter, K., McMahan, S., and Sekelsky, J. (2005) Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 170, 1737–1745.CrossRefPubMedGoogle Scholar
  24. 24.
    Sears, H. C., Kennedy, C. J., and Garrity, P. A. (2003) Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 130, 3557–3565.CrossRefPubMedGoogle Scholar
  25. 25.
    Sogame, N., Kim, M., and Abrams, J. M. (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc. Natl. Acad. Sci. USA 100, 4696–4701.CrossRefPubMedGoogle Scholar
  26. 26.
    Sokol, N. S. and Ambros, V. (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–1354.CrossRefPubMedGoogle Scholar
  27. 27.
    Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L., and Dickson, B. J. (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807.CrossRefPubMedGoogle Scholar
  28. 28.
    Sun, S., Ting, C.-T., and Wu, C.-I. (2004) The normal function of a speciation gene, odysseus, and its hybrid sterility effect. Science 305, 81–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Swan, A., Barcelo, G., and Schupbach, T. (2005) Drosophila Cks30A interacts with Cdk1 to target Cyclin A for destruction in the female germline. Development 132, 3669–3678.CrossRefPubMedGoogle Scholar
  30. 30.
    Teleman, A. A., Maitra, S., and Cohen, S. M. (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 20, 417–420.CrossRefPubMedGoogle Scholar
  31. 31.
    Watnick, T. J., Jin, Y., Matunis, E., Kernan, M. J., and Montell, C. (2003) A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol. 13, 2179–2184.CrossRefPubMedGoogle Scholar
  32. 32.
    Xie, H. B. and Golic, K. G. (2004) Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168, 1477–1489.CrossRefPubMedGoogle Scholar
  33. 33.
    Rong, Y. S., Titen, S. W., Xie, H. B., et al. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581.CrossRefPubMedGoogle Scholar
  34. 34.
    Gong, W. J. and Golic, K. G. (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2556–2561.CrossRefPubMedGoogle Scholar
  35. 35.
    Siegal, M. L. and Hartl, D. L. (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/lox system in Drosophila. Genetics 144, 715–726.PubMedGoogle Scholar
  36. 36.
    Rong, Y. S. and Golic, K. G. (2001) A Targeted Gene Knockout in Drosophila. Genetics 157, 1307–1312.PubMedGoogle Scholar
  37. 37.
    Gong, W. J. and Golic, K. G. (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics 168, 1467–1476.CrossRefPubMedGoogle Scholar
  38. 38.
    Rong, Y. S. and Golic, K. G. (2000) Gene Targeting by Homologous Recombination in Drosophila. Science 288, 2013–2018.CrossRefPubMedGoogle Scholar
  39. 39.
    Dolezal, T., Gazi, M., Zurovec, M., and Bryant, P. J. (2003) Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics 165, 653–666.PubMedGoogle Scholar
  40. 40.
    Egli, D., Selvaraj, A., Yepiskoposyan, H., et al. (2003) Knockout of ‘metalresponsive transcription factor’ MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J. 222, 100–108.CrossRefGoogle Scholar
  41. 41.
    Maggert, K. A. and Golic, K. G. (2005) Highly efficient sex chromosome interchanges produced by I-CreI expression in Drosophila. Genetics 171, 1103–1114.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Keith A. Maggert
    • 1
  • Wei J. Gong
    • 2
  • Kent G. Golic
    • 2
  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations