Advertisement

Drosophila pp 97-117 | Cite as

P-Element Mutagenesis

  • Thomas Hummel
  • Christian Klämbt
Part of the Methods in Molecular Biology book series (MIMB, volume 420)

Abstract

Mobile elements were first used as a mutagenesis tool that introduces a molecular tag in the genes of interest. This facilitated subsequent molecular cloning and eventually promoted molecular analysis of a large number of fly genes. Soon after, P-elements were modified to detect genes not only based on a mutant phenotype but rather through revealing RNA or protein expression patterns (enhancer trap, gene trap). Owing to the typically imprecise mobilization of the P-elements these enhancer trap or gene trap insertions also provided means to generate (excision) mutants. Whereas the excision mutants are valuable deletions they are induced in a random fashion and the exact breakpoints have to be determined following molecular analysis. More recently, the introduction of recombination targets (flipase recombination targets) into P-elements has provided the ability to generate precise chromosomal deletions between preselected sites. Here we will summarize the current genetic approaches to generate different type of insertional and deletion mutations using specifically designed P-elements.

Key Words

Drosophila genetic screens mutation recombination P-element 

References

  1. 1.
    Rio, D. C. (1990) Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24, 543–578.CrossRefPubMedGoogle Scholar
  2. 2.
    Beall, E. L. and Rio, D. C. (1997) Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 11, 2137–2151.CrossRefPubMedGoogle Scholar
  3. 3.
    Tang, M., Cecconi, C., Kim, H., Bustamante, C., and Rio, D. C. (2005) Guanosine triphosphate acts as a cofactor to promote assembly of initial P-element transposase-DNA synaptic complexes. Genes Dev. 19, 1422–1425.CrossRefPubMedGoogle Scholar
  4. 4.
    Staveley, B. E., Heslip, T. R., Hodgetts, R. B., and Bell, J. B. (1995) Protected Pelement termini suggest a role for inverted-repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics 139, 1321–1329.PubMedGoogle Scholar
  5. 5.
    Takasu-Ishikawa, E., Yoshihara, M., and Hotta, Y. (1992) Extra sequences found at P element excision sites in Drosophila melanogaster. Mol. Gen. Genet. 232, 17–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Liao, G. C., Rehm, E. J., and Rubin, G. M. (2000) Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 3347–3351.CrossRefPubMedGoogle Scholar
  7. 7.
    Hacker, U., Nystedt, S., Barmchi, M. P., Horn, C., and Wimmer, E. A. (2003) piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc. Natl. Acad. Sci. USA 100, 7720–7725.CrossRefPubMedGoogle Scholar
  8. 8.
    Metaxakis, A., Oehler, S., Klinakis, A., and Savakis, C. (2005) Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171, 571–581.CrossRefPubMedGoogle Scholar
  9. 9.
    Bellen, H. J., Levis, R. W., Liao, G., et al. (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781.CrossRefPubMedGoogle Scholar
  10. 10.
    Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470.PubMedGoogle Scholar
  11. 11.
    Thibault, S. T., Singer, M. A., Miyazaki, W. Y., et al. (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287.CrossRefPubMedGoogle Scholar
  12. 12.
    Parks, A. L., Cook, K. R., Belvin, M., et al. (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292.CrossRefPubMedGoogle Scholar
  13. 13.
    Tower, J., Karpen, G. H., Craig, N., and Spradling, A. C. (1993) Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359.PubMedGoogle Scholar
  14. 14.
    Zhang, P. and Spradling, A. C. (1993) Efficient and dispersed local P element transposition from Drosophila females. Genetics 133, 361–373.PubMedGoogle Scholar
  15. 15.
    Wemmer, T. and Klambt, C. (1995) A genetic analysis of the Drosophila closely linked interacting genes bulge, argos and soba. Genetics 140, 629–641.PubMedGoogle Scholar
  16. 16.
    Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R., and Engels, W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117.CrossRefPubMedGoogle Scholar
  17. 17.
    Sepp, K. J. and Auld, V. J. (1999) Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics 151, 1093–1101.PubMedGoogle Scholar
  18. 18.
    Gray, Y. H., Tanaka, M. M., and Sved, J. A. (1996) P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics 144, 1601–1610.PubMedGoogle Scholar
  19. 19.
    Preston, C. R., Sved, J. A., and Engels, W. R. (1996) Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics 144, 1623–1638.PubMedGoogle Scholar
  20. 20.
    Golic, K. G. (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961.CrossRefPubMedGoogle Scholar
  21. 21.
    Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.CrossRefPubMedGoogle Scholar
  22. 22.
    Ryder, E., Blows, F., Ashburner, M., et al. (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167, 797–813.CrossRefPubMedGoogle Scholar
  23. 23.
    Huet, F., Lu, J. T., Myrick, K. V., Baugh, L. R., Crosby, M. A., and Gelbart, W. M. (2002) A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc. Natl. Acad. Sci. USA 99, 9948–9953.CrossRefPubMedGoogle Scholar
  24. 24.
    Mohr, S. E. and Gelbart, W. M. (2002) Using the P[wHy] hybrid transposable element to disrupt genes in region 54D-55B in Drosophila melanogaster. Genetics 162, 165–176.PubMedGoogle Scholar
  25. 25.
    Pascual, A., Huang, K. L., and Preat, T. (2005) Conditional UAS-targeted repression in Drosophila. Nucleic Acids Res. 33, E7.CrossRefPubMedGoogle Scholar
  26. 26.
    Wilson, C., Pearson, R. K., Bellen, H. J., O’Kane, C. J., Grossniklaus, U., and Gehring, W. J (1989) P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 3, 1301–1313.CrossRefPubMedGoogle Scholar
  27. 27.
    Myrick, K. V. and Gelbart, W. M. (2002) Universal Fast Walking for direct and versatile determination of flanking sequence. Gene 284, 125–131.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Thomas Hummel
    • 1
  • Christian Klämbt
    • 1
  1. 1.Institut für Neuro- und VerhaltensbiologieUniversität MünsterMünsterGermany

Personalised recommendations