Drosophila pp 391-424

Part of the Methods in Molecular Biology book series (MIMB, volume 420)

Drosophila Cell Lines as Model Systems and as an Experimental Tool

  • Buzz Baum
  • Lucy Cherbas

Abstract

Given the power of Drosophila genetics, it may seem surprising to discover that many fly researchers are turning to Drosophila cell culture as an experimental system. However, as we will show in this chapter, there are many benefits to be gained by using cell lines as a complement to studies in a tissue and developmental context in the fly. Moreover, one can argue that Drosophila cell culture, in itself, provides an excellent model system for the study of many fundamental questions in molecular and cellular biology. In this review, we offer a summary of techniques that should be useful to researchers in the Drosophila community working with fly cell lines. These include techniques for growing and maintaining cell lines, transient and stable transfection, RNA interference, imaging, immunostaining, fluorescence-activated cell sorting, and for the isolation of RNA and protein from fly cells.

Key Words

Cell culture cell lines Drosophila imaging Kc RNAi RNAi screens S2 S2R+ stable transformants transfection 

References

  1. 1.
    Lizcano, J. M., Alrubaie, S., Kieloch, A., Deak, M., Leevers, S. J., and Alessi, D. R. (2003) Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Biochem. J. 374, 297–306.CrossRefPubMedGoogle Scholar
  2. 2.
    Cherbas, L., Lee, K., and Cherbas, P. (1991) Identification of ecdysone response elements by analysis of the Drosophila Eip28/29 gene. Genes Dev. 5, 120–131.CrossRefPubMedGoogle Scholar
  3. 3.
    Kunda, P., Craig, G., Dominguez, V., and Baum, B. (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875.CrossRefPubMedGoogle Scholar
  4. 4.
    Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B., and Ezekowitz, R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648.CrossRefPubMedGoogle Scholar
  5. 5.
    Clemens, J. C., Worby, C. A., Simonson-Leff, N., et al. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503.CrossRefPubMedGoogle Scholar
  6. 6.
    Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.CrossRefPubMedGoogle Scholar
  7. 7.
    Kiger, A. A., Baum, B., Jones, S., et al. (2003) A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27.CrossRefPubMedGoogle Scholar
  8. 8.
    Rogers, S. L., Wiedemann, U., Stuurman, N., and Vale, R. D. (2003) Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088.CrossRefPubMedGoogle Scholar
  9. 9.
    Echalier, G. (1997) Drosophila Cells in Culture, Academic Press, San Diego.Google Scholar
  10. 10.
    Echalier, G. and Ohanessian, A. (1969) Isolation, in tissue culture, of Drosophila melangaster cell lines. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 268, 1771–1773.PubMedGoogle Scholar
  11. 11.
    Kakpakov, V. T., Gvozdev, V. A., Platova, T. P., and Polukarova, L. G. (1969) In vitro establishment of embryonic cell lines of Drosophila melanogaster. Genetika Moscow 4, 67–75.Google Scholar
  12. 12.
    Schneider, I. (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365.PubMedGoogle Scholar
  13. 13.
    Mosna, G. and Dolfini, S. (1972) Morphological and chromosomal characterization of three new continuous cell lines of Drosophila melanogaster. Chromosoma 38, 1–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bernhard, H. P., Lienhard, S., and Reganass, U. (1979) Invertebrate Systems in vitro, in Fifth International Conference on Invertebrate Tissue Culture, Rigi-Kaltbad, Switzerland, (Kurstak, E., Maramorosch, K., and Dubendorfer, A., eds.), Elsevier, Amsterdam, pp. 13–26.Google Scholar
  15. 15.
    Simcox, A. A., Sobeih, M. M., and Shearn, A. (1985) Establishment and characterization of continuous cell lines derived from temperature-sensitive mutants of Drosophila melanogaster. Somat. Cell Mol. Genet. 11, 63–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Gateff, E., Gissmann, L., Shrestha, R., et al. (1980) in Invertebrate Systems In Vitro (Kurstak, E., Maramorosch, K., and Dübendorfer, A, ed.), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 517–533.Google Scholar
  17. 17.
    Yanagawa, S., Lee, J. S., and Ishimoto, A. (1998) Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J. Biol. Chem. 273, 32,353–32,359.CrossRefPubMedGoogle Scholar
  18. 18.
    Ui, K., Ueda, R., and Miyake, T. (1987) Cell lines from imaginal discs of Drosophila melanogaster. In Vitro Cell Dev. Biol. 23, 707–711.CrossRefPubMedGoogle Scholar
  19. 19.
    Ui, K., Nishihara, S., Sakuma, M., et al. (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev. Biol. Anim. 30A, 209–216.CrossRefPubMedGoogle Scholar
  20. 20.
    Currie, D. A., Milner, M. J., and Evans, C. W. (1988) The growth and differentiation in vitro of leg and wing imaginal disc cells from Drosophila melanogaster. Development 102, 805–814.Google Scholar
  21. 21.
    Lum, L., Yao, S., Mozer, B., et al. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.CrossRefPubMedGoogle Scholar
  22. 22.
    Nybakken, K., Vokes, S. A., Lin, T. Y., McMahon, A. P., and Perrimon, N. (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat. Genet. 37, 1323–1332.CrossRefPubMedGoogle Scholar
  23. 23.
    DasGupta, R., Kaykas, A., Moon, R. T., and Perrimon, N. (2005) Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833.CrossRefPubMedGoogle Scholar
  24. 24.
    Wei, Q., Marchler, G., Edington, K., Karsch-Mizrachi, I., and Paterson, B. M. (2000) RNA interference demonstrates a role for nautilus in the myogenic conversion of Schneider cells by daughterless. Dev. Biol. 228, 239–255.CrossRefPubMedGoogle Scholar
  25. 25.
    Cherbas, L. and Cherbas P. (2006) in Baculovirus Expression Protocols, (Murhammer, D., ed.), Humana Press, Totowa, NJ.Google Scholar
  26. 26.
    Fehon, R. G., Kooh, P. J., Rebay, I., et al. (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534.CrossRefPubMedGoogle Scholar
  27. 27.
    Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., and Artavanis-Tsakonas, S. (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67, 687–699.CrossRefPubMedGoogle Scholar
  28. 28.
    Savakis, C., Demetri, G., and Cherbas, P. (1980) Ecdysteroid-inducible polypeptides in a Drosophila cell line. Cell 22, 665–674.CrossRefPubMedGoogle Scholar
  29. 29.
    Gwack, Y., Sharma, S., Nardone, J., et al. (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650.CrossRefPubMedGoogle Scholar
  30. 30.
    Cherry, S. and Silverman, N. (2006) Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat. Immunol. 7, 911–917.CrossRefPubMedGoogle Scholar
  31. 31.
    Dimarcq, J. L., Imler, J. L., Lanot, R., et al. (1997) Treatment of l(2)mbn Drosophila tumorous blood cells with the steroid hormone ecdysone amplifies the inducibility of antimicrobial peptide gene expression. Insect Biochem. Mol. Biol. 27, 877–886.CrossRefPubMedGoogle Scholar
  32. 32.
    Foley, E. and O’Farrell, P. H. (2004) Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol 2, E203.CrossRefPubMedGoogle Scholar
  33. 33.
    Stroschein-Stevenson, S. L., Foley, E., O’Farrell, P. H., and Johnson, A. D. (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4, e4.CrossRefPubMedGoogle Scholar
  34. 34.
    Goshima, G. and Vale, R. D. (2003) The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016.CrossRefPubMedGoogle Scholar
  35. 35.
    Minin, A. A., Kulik, A. V., Gyoeva, F. K., Li, Y., Goshima, G., and Gelfand, V. I. (2006) Regulation of mitochondria distribution by RhoA and formins. J. Cell Sci. 119, 659–670.CrossRefPubMedGoogle Scholar
  36. 36.
    Somma, M. P., Fasulo, B., Cenci, G., Cundari, E., and Gatti, M. (2002) Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell 13, 2448–2460.CrossRefPubMedGoogle Scholar
  37. 37.
    Echard, A., Hickson, G. R., Foley, E., and O’Farrell, P. H. (2004) Terminal cytokinesis events uncovered after an RNAi screen. Curr. Biol. 14, 1685–1693.CrossRefPubMedGoogle Scholar
  38. 38.
    Schneider, I. (1964) Differentiation of larval Drosophila eye-antennal discs in Vitro. J. Exp. Zool. 156, 91–103.CrossRefPubMedGoogle Scholar
  39. 39.
    Shields, G. and Sang, J. H. (1977) Improved medium for culture of Drosophila embryonic cells. Drosophila Information Service 52, 9255–9261.Google Scholar
  40. 40.
    Cherbas, L., Moss, R. E., and Cherbas, P. (1994) Methods in Cell Biology, in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology, vol. 44 (Goldstein, L. S. B. and Fyrberg, E., ed.), Academic Press, San Diego, pp. 161–179.Google Scholar
  41. 41.
    Wang, H., Yu, A., Wiman, B., and Pap, S. (2003) Identification of amino acids in antiplasmin involved in its noncovalent ‘lysine-binding-site’-dependent interaction with plasmin. Eur. J. Biochem. 270, 2023–2029.CrossRefPubMedGoogle Scholar
  42. 42.
    Klueg, K. M., Alvarado, D., Muskavitch, M. A., and Duffy, J. B. (2002) Creation of a GAL4/UAS-coupled inducible gene expression system for use in Drosophila cultured cell lines. Genesis 34, 119–122.CrossRefPubMedGoogle Scholar
  43. 43.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  44. 44.
    Bourouis, M. and Jarry, B. (1983) Vectors containing a prokaryotic dihydrofolate reductase gene transform Drosophila cells to methotrexate-resistance. EMBO J. 2, 1099–1104.PubMedGoogle Scholar
  45. 45.
    Segal, D., Cherbas, L., and Cherbas, P. (1996) Genetic transformation of Drosophila cells in culture by P element-mediated transposition. Somat. Cell Mol. Genet. 22, 159–165.CrossRefPubMedGoogle Scholar
  46. 46.
    Johansen, H., van der Straten, A., Sweet, R., Otto, E., Maroni, G., and Rosenberg, M. (1989) Regulated expression at high copy number allows production of a growth-inhibitory oncogene product in Drosophila Schneider cells. Genes Dev. 3, 882–889.CrossRefPubMedGoogle Scholar
  47. 47.
    Jokerst, R. S., Weeks, J. R., Zehring, W. A., and Greenleaf, A. L. (1989) Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Mol. Gen. Genet. 215, 266–275.CrossRefPubMedGoogle Scholar
  48. 48.
    Cherbas, L. and Cherbas, P. (2000) Drosophila Cell Culture and Transformation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 373–387.Google Scholar
  49. 49.
    Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.CrossRefPubMedGoogle Scholar
  50. 50.
    Hu, X., Cherbas, L., and Cherbas, P. (2003) Transcription activation by the ecdysone receptor (EcR/USP): identification of activation functions. Mol. Endocrinol. 17, 716–731.CrossRefPubMedGoogle Scholar
  51. 51.
    Bunch, T. A., Grinblat, Y., and Goldstein, L. S. (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061.CrossRefPubMedGoogle Scholar
  52. 52.
    Roman, G. (2004) The genetics of Drosophila transgenics. Bioessays 26, 1243–1253.CrossRefPubMedGoogle Scholar
  53. 53.
    Peel, D. J., Johnson, S. A., and Milner, M. J. (1990) The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines. Tissue Cell 22, 749–758.CrossRefPubMedGoogle Scholar
  54. 54.
    Karpova, N., Bobinnec, Y., Fouix, S., Huitorel, P., and Debec, A. (2006) Jupiter, a new Drosophila protein associated with microtubules. Cell Motil. Cytoskeleton 63, 301–312.CrossRefPubMedGoogle Scholar
  55. 55.
    Kittler, R., Pelletier, L., Ma, C., et al. (2005) RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc. Natl. Acad. Sci. USA 102, 2396–2401.CrossRefPubMedGoogle Scholar
  56. 56.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.CrossRefPubMedGoogle Scholar
  57. 57.
    Saleh, M. C., van Rij, R. P., Hekele, A., et al. (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 8, 793–802.CrossRefPubMedGoogle Scholar
  58. 58.
    Wheeler, D. B., Carpenter, A. E., and Sabatini, D. M. (2005) Cell microarrays and RNA interference chip away at gene function. Nat. Genet. 37 Suppl, S25–S30.CrossRefPubMedGoogle Scholar
  59. 59.
    Cherbas, L., Yonge, C. D., Cherbas, P., and Williams, C. M. (1980) The morphological response of Kc-H cells to ecdysteroids: Hormonal specificity. Roux Arch. Dev. Biol. 189, 1–15.CrossRefGoogle Scholar
  60. 60.
    Tirouvanziam, R., Davidson, C. J., Lipsick, J. S., and Herzenberg, L. A. (2004) Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Proc. Natl. Acad. Sci. USA 101, 2912–2917.CrossRefPubMedGoogle Scholar
  61. 61.
    Storti, R. V., Horovitch, S. J., Scott, M. P., Rich, A., and Pardue, M. L. (1978) Myogenesis in primary cell cultures from Drosophila melanogaster: protein synthesis and actin heterogeneity during development. Cell 13, 589–598.CrossRefPubMedGoogle Scholar
  62. 62.
    Hayashi, I. and Perez-Magallanes, M. (1994) Establishment of pure neuronal and muscle precursor cell cultures from Drosophila early gastrula stage embryos. In Vitro Cell Dev. Biol. Anim. 30A, 202–208.CrossRefPubMedGoogle Scholar
  63. 63.
    Cherbas, L. and Cherbas, P. (1997) “Parahomologous” gene targeting in Drosophila cells: an efficient, homology-dependent pathway of illegitimate recombination near a target site. Genetics 145, 349–358.PubMedGoogle Scholar
  64. 64.
    Bateman, J. M. and McNeill, H. (2004) Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119, 87–96.CrossRefPubMedGoogle Scholar
  65. 65.
    Moss, R. E. (1985) Analysis of a transformation system for Drosophila tissue culture cells. Harvard University, Cambridge, MA.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Buzz Baum
    • 1
  • Lucy Cherbas
    • 2
  1. 1.University College London Branch of the Ludwig Institute for Cancer ResearchLondonUK
  2. 2.Department of Biology and Drosophila Genomics Resource CenterIndiana UniversityBloomingtonUSA

Personalised recommendations