Skip to main content

Drosophila melanogaster and the Development of Biology in the 20th Century

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 420))

Abstract

The fruit fly Drosophila has played a central role in the development of biology during the 20th century. First chosen as a convenient organism to test evolutionary theories soon became the central element in an elaborate, fruitful, and insightful research program dealing with the nature and function of the gene. Through the activities of TH Morgan and his students, Drosophila did more than any other organism to lay down the foundations of genetics as a discipline and a tool for biology. In the last third of the century, a judicious blend of classical genetics and molecular biology focused on some mutants affecting the pattern of the Drosophila larva and the adult, and unlocked the molecular mechanisms of development. Surprisingly, many of the genes identified in this exercise turned to be conserved across organisms. This observation provided a vista of universality at a fundamental level of biological activity. At the dawn of the 21st century, Drosophila continues to be center stage in the development of biology and to open new ways of seeing cells and to understand the construction and the functioning of organisms.

“When I see Drosophila under moderate magnification of a binocular microscope I marvel at the clearest form of the head with giant red eyes, the antennae, and elaborate mouth parts; at the arch of the sturdy thorax bearing a pair of beautifully iridescent, transparent wings and three pairs of legs.........” C. Stern (1954) “Two or three bristles” Am. Sci. 42, 213–247.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carlson, E. O. (2004) Mendel’s legacy. The origin of classical genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Kohler, R. E. (1994) Lords of the Fly. The University of Chicago Press, Chicago, Il.

    Google Scholar 

  3. Sullivan, W., Ashburner, M., and Hawley, R. S. (2000) Drosophila Protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  4. Roberts, D. B. (ed.) (1998) Drosophila: a practical approach, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  5. Lawrence, P. A. (1992) The making of a fly. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  6. Morgan, T. H. (1910) Sex-limited inheritance in Drosophila. Science 32, 120–122.

    Article  CAS  PubMed  Google Scholar 

  7. Allen, G. E. (1978) Thomas Hunt Morgan: the man and his science. Princeton University Press.

    Google Scholar 

  8. Brookes, M. (2001) Fly the unsung hero of 20th century Science. Harper Collins Publishers.

    Google Scholar 

  9. Sturtevant, A. H. (1965) A history of genetics. (Reprinted by Cold Spring Harbor Laboratory Press in 2000).

    Google Scholar 

  10. Falk, R. and Schwartz, S. (1993) Morgan’s hypothesis of the genetic control of development. Genetics 134, 671–674.

    CAS  PubMed  Google Scholar 

  11. Horowitz, N. H. (1998) TH Morgan at Caltech. Genetics 149, 1629–1632.

    CAS  PubMed  Google Scholar 

  12. Morgan, T. H. (1934) Embryology and Genetics. Columbia University Press, New York.

    Google Scholar 

  13. Morgan, T. H (1934) The relation of genetics to physiology and medicine. Nobel lecture.

    Google Scholar 

  14. Poulson, D. F. (1950) Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster meigen, in Biology of Drosophila, (Demerec, M., ed.), John Wiley and Sons, pp. 168–274.

    Google Scholar 

  15. Campos Ortega, J. A. and Hartenstein, V. (1997) The embryonic development of Drosophila melanogaster. Springer Verlag, Berlin.

    Google Scholar 

  16. Boveri, T. H. (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh. phys.-med. Ges. 35, 67–90.

    Google Scholar 

  17. Poulson, D. (1945) Chromosomal control of embryogenesis in Drosophila. Am. Nat. 79, 340–363.

    Article  Google Scholar 

  18. Hadorn, E. (1978). Transdetermination, in The Genetics and Biology of Drosophila, vol. 2c (Ashburner, M. and Wright, T. R. F., eds.), Academic Press, pp. 556–617.

    Google Scholar 

  19. Hadorn, E. (1961) Developmental genetics and lethal factors. Methuen and Co. Ltd.

    Google Scholar 

  20. Lewis, E. B. (1994) Homeosis: the first 100 years. Trends Genet. 10, 341–343.

    Article  CAS  PubMed  Google Scholar 

  21. Bateson, W. (1894) Materials for the study of variation. MacMillan and Co., London.

    Google Scholar 

  22. Lewis, E. B. (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565–570.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis, E. B. (1995) The bithorax complex: The first fifty years, in Les Prix Nobel, Almquist & Wiksell International, Stockholm, Sweden, pp. 233–260.

    Google Scholar 

  24. Lipshitz, H. (2004) From fruit flies to fallout: Ed Lewis and his science. J. Genet. 83, 201–218.

    Article  PubMed  Google Scholar 

  25. Weiner, J. (1999) Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior. Alfred Knopf Inc.

    Google Scholar 

  26. Stern, C. (1968) Genetic mosaics and other essays. Harvard University Press.

    Google Scholar 

  27. Sturtevant, A. H. (1932) The use of mosaics in the study of the developmental effects of genes. Proc. Int. Congr. Genet. 1, 304–307.

    Google Scholar 

  28. Stern, C. (1954) Two or three bristles. Am. Sci. 42, 213–247.

    Google Scholar 

  29. Ghysen, A. and Dambly-Chaudiere, C. (1988) From DNA to form: the achaetescute complex. Genes Dev. 2, 495–501.

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Skarmeta, J. L., Campuzano, S., and Modolell, J. (2003) Half a century of neural prepatterning: the story of a few bristles and many genes. Nat. Rev. Neurosci. 4, 587–598.

    Article  CAS  PubMed  Google Scholar 

  31. Lewis, E. B. (1963) Genes and developmental pathways. Am. Zool. 3, 33–56.

    Google Scholar 

  32. Garcia-Bellido, A. and Merriam, J. (1971) Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev. Biol. 24, 61–87.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Bellido, A. (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp. 161–182.

    Google Scholar 

  34. Garcia-Bellido, A. (1998) The engrailed story. Genetics 148, 539–544.

    CAS  PubMed  Google Scholar 

  35. Wieschaus, E. and Gehring, W. (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev. Biol. 50, 249–263.

    Article  CAS  PubMed  Google Scholar 

  36. Hotta, Y. and Benzer, S. (1972) Mapping of behaviour in Drosophila mosaics. Nature 240, 527–535.

    Article  CAS  PubMed  Google Scholar 

  37. Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.

    Article  CAS  PubMed  Google Scholar 

  38. Perrimon, N. (1998) Creating mosaics in Drosophila. Int. J. Dev. Biol. 42, 243–247.

    CAS  PubMed  Google Scholar 

  39. Lawrence, P. A. (1981) A general cell marker for clonal analysis of Drosophila development. J. Embryol. Exp. Morphol. 64, 321–332.

    CAS  PubMed  Google Scholar 

  40. Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.

    CAS  PubMed  Google Scholar 

  41. Rubin, G. M. and Lewis, E. B. (2000) A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218.

    Article  CAS  PubMed  Google Scholar 

  42. Bender, W., Spierer, P., and Hogness, D. S. (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J. Mol. Biol. 168, 17–33.

    Article  CAS  PubMed  Google Scholar 

  43. Bender, W., Akam, M., Karch, F., et al. (1983). Molecular genetics of the Bithorax complex in Drosophila melanogaster. Science 221, 23–29.

    Article  CAS  PubMed  Google Scholar 

  44. Scott, M. P., Weiner, A. J., Hazelrigg, T. I., et al. (1983) The molecular organization of the Antennapedia locus of Drosophila. Cell 35, 763–776.

    Article  CAS  PubMed  Google Scholar 

  45. Garber, R. L., Kuroiwa, A., and Gehring, W. J. (1983) Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 2, 2027–2036.

    CAS  PubMed  Google Scholar 

  46. Akam, M. E. (1983) The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J. 2, 2075–2084.

    CAS  PubMed  Google Scholar 

  47. Hafen, E., Levine, M., Garber, R. L., and Gehring, W. J. (1983) An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J. 2, 617–623.

    CAS  PubMed  Google Scholar 

  48. Rubin, G. M. and Spradling, A. C. (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353.

    Article  CAS  PubMed  Google Scholar 

  49. Shearn, A., Rice, T., Garen, A., and Gehring, W. (1971) Imaginal disc abnormalities in lethal mutants of Drosophila. Proc. Natl. Acad. Sci. USA 68, 2594–2598.

    Article  CAS  PubMed  Google Scholar 

  50. Bakken, A. H. (1973) A cytological and genetic study of oogenesis in Drosophila melanogaster. Dev. Biol. 33, 100–122.

    Article  CAS  PubMed  Google Scholar 

  51. Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.

    Article  PubMed  Google Scholar 

  52. Nüsslein-Volhard, C., Wieschaus, E., and Kluding, H. (1984): Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster I: Zygotic loci on the second chromosome. Wilh. Roux’s Arch. 193, 267–282.

    Article  Google Scholar 

  53. Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C., and Kluding, H. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II: Zygotic loci on the third chromosome. Wilh. Roux’s Arch. 193, 283–295.

    Article  Google Scholar 

  54. Wieschaus, E., Nüsslein-Volhard, C., and Jürgens, G. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III: Zygotic loci on the X-chromosome and fourth chromosome. Wilh. Roux’s Arch. 193, 296–308.

    Article  Google Scholar 

  55. Ingham, P. W. (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–34.

    Article  CAS  PubMed  Google Scholar 

  56. Gurdon, J. B. (1974) The control of gene expression in animal development. Harvard University Press.

    Google Scholar 

  57. McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., and Gehring, W. J. (1984) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 428–433.

    Article  CAS  PubMed  Google Scholar 

  58. Scott, M. P. and Weiner, A. J. (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA 81, 4115–4119.

    Article  CAS  PubMed  Google Scholar 

  59. McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A., and Gehring, W. J. (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408.

    Article  CAS  PubMed  Google Scholar 

  60. O’Kane, C. J. and Gehring, W. J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127.

    Article  PubMed  Google Scholar 

  61. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    CAS  PubMed  Google Scholar 

  62. Bate, C. M. and Martinez Arias, A. (eds.) (1993) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  63. Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R., and Rubin, G. M. (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716.

    Article  CAS  PubMed  Google Scholar 

  64. Karim, F. D., Chang, H. C., Therrien, M., Wassarman, D. A., Laverty, T., and Rubin, G. M. (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329.

    CAS  PubMed  Google Scholar 

  65. The C. elegans sequencing consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.

    Article  Google Scholar 

  66. Ashburner, M. (2006) Won for all: how the Drosophila genome was sequenced. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  67. Myers, E. W. et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–2204.

    Article  CAS  PubMed  Google Scholar 

  68. Adams, M. D. et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2189.

    Article  PubMed  Google Scholar 

  69. Rubin, G. M. et al. (2000) Comparative genomics of the eukaryotes. Science 287, 2204–2215.

    Article  CAS  PubMed  Google Scholar 

  70. Bier, E. (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9–23.

    Article  CAS  PubMed  Google Scholar 

  71. Reiter, L. T. and Bier, E. (2002) Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin. Ther. Targets 6, 387–399.

    Article  CAS  PubMed  Google Scholar 

  72. Metzger, R. J. and Krasnow, M. A. (1999) Genetic control of branching morphogenesis. Science 284, 1635–1639.

    Article  CAS  PubMed  Google Scholar 

  73. Tessier-Lavigne, M. and Goodman, C. S. (1996) The molecular biology of axon guidance. Science 274, 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  74. Wodarz, A. and Huttner, W. B. (2003) Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 120, 1297–1309.

    Article  CAS  PubMed  Google Scholar 

  75. Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. (2004) The stem cell niche: theme and variations. Curr. Opin. Cell Biol. 16, 693–699.

    Article  CAS  PubMed  Google Scholar 

  76. Bilder, D. (2004) Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925.

    Article  CAS  PubMed  Google Scholar 

  77. Caussinus, E. and Gonzalez, C. (2005) Induction of tumor growth by altered stemcell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1027, 1028.

    Article  Google Scholar 

  78. Brumby, A. M. and Richardson, H. E. (2005) Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5, 626–639.

    Article  CAS  PubMed  Google Scholar 

  79. Bilen, J. and Bonini, N. M. (2005) Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171.

    Article  CAS  PubMed  Google Scholar 

  80. Margulies, C., Tully, T., and Dubnau, J. (2005) Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713.

    Article  CAS  PubMed  Google Scholar 

  81. Bellen, H. J. (1998) The fruit fly: a model organism to study the genetics of alcohol abuse and addiction? Cell 93, 909–912.

    Article  CAS  PubMed  Google Scholar 

  82. Slack, J. (1984) A Rosetta stone for pattern formation in animals? Nature 310, 364–365.

    Article  CAS  PubMed  Google Scholar 

  83. St Johnston, D. (2002) The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188.

    Article  CAS  PubMed  Google Scholar 

  84. Kaltschmidt, J. A. and Martinez Arias, A. (2002) A new dawn for an old connection: development meets the cell. Trends Cell Biol. 12, 316–320.

    Article  CAS  PubMed  Google Scholar 

  85. Kiger, A. A., Baum, B., Jones, S., et al. (2003) A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27.

    Article  CAS  PubMed  Google Scholar 

  86. Boutros, M., Kiger, A. A., Armknecht, S., et al. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.

    Article  CAS  PubMed  Google Scholar 

  87. Lum, L., Yao, S., Mozer, B., et al. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.

    Article  CAS  PubMed  Google Scholar 

  88. Arbeitman, M. N., Furlong, E. E., Imam, F., et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275.

    Article  CAS  PubMed  Google Scholar 

  89. Stolc, V., Gauhar, Z., Mason, C., et al. (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306, 655–660.

    Article  CAS  PubMed  Google Scholar 

  90. Peel, A. D., Chipman, A. D., and Akam, M. (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet. 6, 905–916.

    Article  CAS  PubMed  Google Scholar 

  91. Carroll, S. B. (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W. W. Norton & Company, Inc., New York, NY.

    Google Scholar 

  92. Houchmandzadeh, B., Wieschaus, E., and Leibler, S. (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802.

    CAS  PubMed  Google Scholar 

  93. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R, Tank, D. W., and Wieschaus, E. F. (2005) Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA 102, 18,403–18,407.

    Article  CAS  PubMed  Google Scholar 

  94. Jaeger, J., Surkova, S., Blagov, M., et al. (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371.

    Article  CAS  PubMed  Google Scholar 

  95. Kruse, K., Pantazis, P., Bollenbach, T., Jülicher, F., and Gonzalez-Gaitan, M. (2004) Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856.

    Article  CAS  PubMed  Google Scholar 

  96. Isalan, M., Lemerle, C., and Serrano, L. (2005) Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol. 3, e64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Arias, A.M. (2008). Drosophila melanogaster and the Development of Biology in the 20th Century. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 420. Humana Press. https://doi.org/10.1007/978-1-59745-583-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-583-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-817-1

  • Online ISBN: 978-1-59745-583-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics