Advertisement

Drosophila melanogaster and the Development of Biology in the 20th Century

  • Alfonso Martinez Arias
Part of the Methods in Molecular Biology book series (MIMB, volume 420)

Abstract

The fruit fly Drosophila has played a central role in the development of biology during the 20th century. First chosen as a convenient organism to test evolutionary theories soon became the central element in an elaborate, fruitful, and insightful research program dealing with the nature and function of the gene. Through the activities of TH Morgan and his students, Drosophila did more than any other organism to lay down the foundations of genetics as a discipline and a tool for biology. In the last third of the century, a judicious blend of classical genetics and molecular biology focused on some mutants affecting the pattern of the Drosophila larva and the adult, and unlocked the molecular mechanisms of development. Surprisingly, many of the genes identified in this exercise turned to be conserved across organisms. This observation provided a vista of universality at a fundamental level of biological activity. At the dawn of the 21st century, Drosophila continues to be center stage in the development of biology and to open new ways of seeing cells and to understand the construction and the functioning of organisms.

Key Words

Development Drosophila fruit fly genes genetics history 

References

  1. 1.
    Carlson, E. O. (2004) Mendel’s legacy. The origin of classical genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Kohler, R. E. (1994) Lords of the Fly. The University of Chicago Press, Chicago, Il.Google Scholar
  3. 3.
    Sullivan, W., Ashburner, M., and Hawley, R. S. (2000) Drosophila Protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  4. 4.
    Roberts, D. B. (ed.) (1998) Drosophila: a practical approach, 2nd ed., Oxford University Press, Oxford.Google Scholar
  5. 5.
    Lawrence, P. A. (1992) The making of a fly. Blackwell Scientific Publications, Oxford.Google Scholar
  6. 6.
    Morgan, T. H. (1910) Sex-limited inheritance in Drosophila. Science 32, 120–122.CrossRefPubMedGoogle Scholar
  7. 7.
    Allen, G. E. (1978) Thomas Hunt Morgan: the man and his science. Princeton University Press.Google Scholar
  8. 8.
    Brookes, M. (2001) Fly the unsung hero of 20th century Science. Harper Collins Publishers.Google Scholar
  9. 9.
    Sturtevant, A. H. (1965) A history of genetics. (Reprinted by Cold Spring Harbor Laboratory Press in 2000).Google Scholar
  10. 10.
    Falk, R. and Schwartz, S. (1993) Morgan’s hypothesis of the genetic control of development. Genetics 134, 671–674.PubMedGoogle Scholar
  11. 11.
    Horowitz, N. H. (1998) TH Morgan at Caltech. Genetics 149, 1629–1632.PubMedGoogle Scholar
  12. 12.
    Morgan, T. H. (1934) Embryology and Genetics. Columbia University Press, New York.Google Scholar
  13. 13.
    Morgan, T. H (1934) The relation of genetics to physiology and medicine. Nobel lecture.Google Scholar
  14. 14.
    Poulson, D. F. (1950) Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster meigen, in Biology of Drosophila, (Demerec, M., ed.), John Wiley and Sons, pp. 168–274.Google Scholar
  15. 15.
    Campos Ortega, J. A. and Hartenstein, V. (1997) The embryonic development of Drosophila melanogaster. Springer Verlag, Berlin.Google Scholar
  16. 16.
    Boveri, T. H. (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh. phys.-med. Ges. 35, 67–90.Google Scholar
  17. 17.
    Poulson, D. (1945) Chromosomal control of embryogenesis in Drosophila. Am. Nat. 79, 340–363.CrossRefGoogle Scholar
  18. 18.
    Hadorn, E. (1978). Transdetermination, in The Genetics and Biology of Drosophila, vol. 2c (Ashburner, M. and Wright, T. R. F., eds.), Academic Press, pp. 556–617.Google Scholar
  19. 19.
    Hadorn, E. (1961) Developmental genetics and lethal factors. Methuen and Co. Ltd.Google Scholar
  20. 20.
    Lewis, E. B. (1994) Homeosis: the first 100 years. Trends Genet. 10, 341–343.CrossRefPubMedGoogle Scholar
  21. 21.
    Bateson, W. (1894) Materials for the study of variation. MacMillan and Co., London.Google Scholar
  22. 22.
    Lewis, E. B. (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565–570.CrossRefPubMedGoogle Scholar
  23. 23.
    Lewis, E. B. (1995) The bithorax complex: The first fifty years, in Les Prix Nobel, Almquist & Wiksell International, Stockholm, Sweden, pp. 233–260.Google Scholar
  24. 24.
    Lipshitz, H. (2004) From fruit flies to fallout: Ed Lewis and his science. J. Genet. 83, 201–218.CrossRefPubMedGoogle Scholar
  25. 25.
    Weiner, J. (1999) Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior. Alfred Knopf Inc.Google Scholar
  26. 26.
    Stern, C. (1968) Genetic mosaics and other essays. Harvard University Press.Google Scholar
  27. 27.
    Sturtevant, A. H. (1932) The use of mosaics in the study of the developmental effects of genes. Proc. Int. Congr. Genet. 1, 304–307.Google Scholar
  28. 28.
    Stern, C. (1954) Two or three bristles. Am. Sci. 42, 213–247.Google Scholar
  29. 29.
    Ghysen, A. and Dambly-Chaudiere, C. (1988) From DNA to form: the achaetescute complex. Genes Dev. 2, 495–501.CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Skarmeta, J. L., Campuzano, S., and Modolell, J. (2003) Half a century of neural prepatterning: the story of a few bristles and many genes. Nat. Rev. Neurosci. 4, 587–598.CrossRefPubMedGoogle Scholar
  31. 31.
    Lewis, E. B. (1963) Genes and developmental pathways. Am. Zool. 3, 33–56.Google Scholar
  32. 32.
    Garcia-Bellido, A. and Merriam, J. (1971) Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev. Biol. 24, 61–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Bellido, A. (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp. 161–182.Google Scholar
  34. 34.
    Garcia-Bellido, A. (1998) The engrailed story. Genetics 148, 539–544.PubMedGoogle Scholar
  35. 35.
    Wieschaus, E. and Gehring, W. (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev. Biol. 50, 249–263.CrossRefPubMedGoogle Scholar
  36. 36.
    Hotta, Y. and Benzer, S. (1972) Mapping of behaviour in Drosophila mosaics. Nature 240, 527–535.CrossRefPubMedGoogle Scholar
  37. 37.
    Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.CrossRefPubMedGoogle Scholar
  38. 38.
    Perrimon, N. (1998) Creating mosaics in Drosophila. Int. J. Dev. Biol. 42, 243–247.PubMedGoogle Scholar
  39. 39.
    Lawrence, P. A. (1981) A general cell marker for clonal analysis of Drosophila development. J. Embryol. Exp. Morphol. 64, 321–332.PubMedGoogle Scholar
  40. 40.
    Xu, T. and Rubin, G. M. (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237.PubMedGoogle Scholar
  41. 41.
    Rubin, G. M. and Lewis, E. B. (2000) A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218.CrossRefPubMedGoogle Scholar
  42. 42.
    Bender, W., Spierer, P., and Hogness, D. S. (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J. Mol. Biol. 168, 17–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Bender, W., Akam, M., Karch, F., et al. (1983). Molecular genetics of the Bithorax complex in Drosophila melanogaster. Science 221, 23–29.CrossRefPubMedGoogle Scholar
  44. 44.
    Scott, M. P., Weiner, A. J., Hazelrigg, T. I., et al. (1983) The molecular organization of the Antennapedia locus of Drosophila. Cell 35, 763–776.CrossRefPubMedGoogle Scholar
  45. 45.
    Garber, R. L., Kuroiwa, A., and Gehring, W. J. (1983) Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 2, 2027–2036.PubMedGoogle Scholar
  46. 46.
    Akam, M. E. (1983) The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J. 2, 2075–2084.PubMedGoogle Scholar
  47. 47.
    Hafen, E., Levine, M., Garber, R. L., and Gehring, W. J. (1983) An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J. 2, 617–623.PubMedGoogle Scholar
  48. 48.
    Rubin, G. M. and Spradling, A. C. (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353.CrossRefPubMedGoogle Scholar
  49. 49.
    Shearn, A., Rice, T., Garen, A., and Gehring, W. (1971) Imaginal disc abnormalities in lethal mutants of Drosophila. Proc. Natl. Acad. Sci. USA 68, 2594–2598.CrossRefPubMedGoogle Scholar
  50. 50.
    Bakken, A. H. (1973) A cytological and genetic study of oogenesis in Drosophila melanogaster. Dev. Biol. 33, 100–122.CrossRefPubMedGoogle Scholar
  51. 51.
    Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefPubMedGoogle Scholar
  52. 52.
    Nüsslein-Volhard, C., Wieschaus, E., and Kluding, H. (1984): Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster I: Zygotic loci on the second chromosome. Wilh. Roux’s Arch. 193, 267–282.CrossRefGoogle Scholar
  53. 53.
    Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C., and Kluding, H. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II: Zygotic loci on the third chromosome. Wilh. Roux’s Arch. 193, 283–295.CrossRefGoogle Scholar
  54. 54.
    Wieschaus, E., Nüsslein-Volhard, C., and Jürgens, G. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III: Zygotic loci on the X-chromosome and fourth chromosome. Wilh. Roux’s Arch. 193, 296–308.CrossRefGoogle Scholar
  55. 55.
    Ingham, P. W. (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Gurdon, J. B. (1974) The control of gene expression in animal development. Harvard University Press.Google Scholar
  57. 57.
    McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A., and Gehring, W. J. (1984) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 428–433.CrossRefPubMedGoogle Scholar
  58. 58.
    Scott, M. P. and Weiner, A. J. (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA 81, 4115–4119.CrossRefPubMedGoogle Scholar
  59. 59.
    McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A., and Gehring, W. J. (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408.CrossRefPubMedGoogle Scholar
  60. 60.
    O’Kane, C. J. and Gehring, W. J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127.CrossRefPubMedGoogle Scholar
  61. 61.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  62. 62.
    Bate, C. M. and Martinez Arias, A. (eds.) (1993) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  63. 63.
    Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R., and Rubin, G. M. (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716.CrossRefPubMedGoogle Scholar
  64. 64.
    Karim, F. D., Chang, H. C., Therrien, M., Wassarman, D. A., Laverty, T., and Rubin, G. M. (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329.PubMedGoogle Scholar
  65. 65.
    The C. elegans sequencing consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.CrossRefGoogle Scholar
  66. 66.
    Ashburner, M. (2006) Won for all: how the Drosophila genome was sequenced. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  67. 67.
    Myers, E. W. et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–2204.CrossRefPubMedGoogle Scholar
  68. 68.
    Adams, M. D. et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2189.CrossRefPubMedGoogle Scholar
  69. 69.
    Rubin, G. M. et al. (2000) Comparative genomics of the eukaryotes. Science 287, 2204–2215.CrossRefPubMedGoogle Scholar
  70. 70.
    Bier, E. (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9–23.CrossRefPubMedGoogle Scholar
  71. 71.
    Reiter, L. T. and Bier, E. (2002) Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin. Ther. Targets 6, 387–399.CrossRefPubMedGoogle Scholar
  72. 72.
    Metzger, R. J. and Krasnow, M. A. (1999) Genetic control of branching morphogenesis. Science 284, 1635–1639.CrossRefPubMedGoogle Scholar
  73. 73.
    Tessier-Lavigne, M. and Goodman, C. S. (1996) The molecular biology of axon guidance. Science 274, 1123–1133.CrossRefPubMedGoogle Scholar
  74. 74.
    Wodarz, A. and Huttner, W. B. (2003) Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 120, 1297–1309.CrossRefPubMedGoogle Scholar
  75. 75.
    Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. (2004) The stem cell niche: theme and variations. Curr. Opin. Cell Biol. 16, 693–699.CrossRefPubMedGoogle Scholar
  76. 76.
    Bilder, D. (2004) Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925.CrossRefPubMedGoogle Scholar
  77. 77.
    Caussinus, E. and Gonzalez, C. (2005) Induction of tumor growth by altered stemcell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1027, 1028.CrossRefGoogle Scholar
  78. 78.
    Brumby, A. M. and Richardson, H. E. (2005) Using Drosophila melanogaster to map human cancer pathways. Nat. Rev. Cancer 5, 626–639.CrossRefPubMedGoogle Scholar
  79. 79.
    Bilen, J. and Bonini, N. M. (2005) Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171.CrossRefPubMedGoogle Scholar
  80. 80.
    Margulies, C., Tully, T., and Dubnau, J. (2005) Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713.CrossRefPubMedGoogle Scholar
  81. 81.
    Bellen, H. J. (1998) The fruit fly: a model organism to study the genetics of alcohol abuse and addiction? Cell 93, 909–912.CrossRefPubMedGoogle Scholar
  82. 82.
    Slack, J. (1984) A Rosetta stone for pattern formation in animals? Nature 310, 364–365.CrossRefPubMedGoogle Scholar
  83. 83.
    St Johnston, D. (2002) The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188.CrossRefPubMedGoogle Scholar
  84. 84.
    Kaltschmidt, J. A. and Martinez Arias, A. (2002) A new dawn for an old connection: development meets the cell. Trends Cell Biol. 12, 316–320.CrossRefPubMedGoogle Scholar
  85. 85.
    Kiger, A. A., Baum, B., Jones, S., et al. (2003) A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27.CrossRefPubMedGoogle Scholar
  86. 86.
    Boutros, M., Kiger, A. A., Armknecht, S., et al. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.CrossRefPubMedGoogle Scholar
  87. 87.
    Lum, L., Yao, S., Mozer, B., et al. (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.CrossRefPubMedGoogle Scholar
  88. 88.
    Arbeitman, M. N., Furlong, E. E., Imam, F., et al. (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275.CrossRefPubMedGoogle Scholar
  89. 89.
    Stolc, V., Gauhar, Z., Mason, C., et al. (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306, 655–660.CrossRefPubMedGoogle Scholar
  90. 90.
    Peel, A. D., Chipman, A. D., and Akam, M. (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet. 6, 905–916.CrossRefPubMedGoogle Scholar
  91. 91.
    Carroll, S. B. (2005) Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. W. W. Norton & Company, Inc., New York, NY.Google Scholar
  92. 92.
    Houchmandzadeh, B., Wieschaus, E., and Leibler, S. (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802.PubMedGoogle Scholar
  93. 93.
    Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R, Tank, D. W., and Wieschaus, E. F. (2005) Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA 102, 18,403–18,407.CrossRefPubMedGoogle Scholar
  94. 94.
    Jaeger, J., Surkova, S., Blagov, M., et al. (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371.CrossRefPubMedGoogle Scholar
  95. 95.
    Kruse, K., Pantazis, P., Bollenbach, T., Jülicher, F., and Gonzalez-Gaitan, M. (2004) Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856.CrossRefPubMedGoogle Scholar
  96. 96.
    Isalan, M., Lemerle, C., and Serrano, L. (2005) Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol. 3, e64.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Alfonso Martinez Arias
    • 1
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK

Personalised recommendations