Advertisement

Phylogenomics pp 201-225 | Cite as

Retroposons: Genetic Footprints on the Evolutionary Paths of Life

  • Hidenori Nishihara
  • Norihiro Okada
Part of the Methods in Molecular Biology™ book series (MIMB, volume 422)

Abstract

Retroposons such as short interspersed elements (SINEs) and long interspersed elements are abundant transposable elements in eukaryote genomes. Recent large-scale comparative genome analyses have revealed that retroposons are a major component of genomes, wherein they provide structural diversity between species and uniqueness to each species. SINEs have been used as powerful markers in phylogenetic analyses of various species. This approach, which has been termed the SINE insertion method, infers phylogenetic relationships based on the presence/absence of SINEs among lineages. However, the method is not yet used extensively among biologists, especially molecular phylogenetists, because it is based on an understanding of the molecular mechanisms of retroposition, which may be unfamiliar to many researchers. Moreover, the method may require a large amount of bench work to characterize a new SINE family and to screen genomic libraries of the species of interest. In this chapter, we present the basic theory and detailed technical steps involved in a SINE insertion analysis. Furthermore, we explain the isolation and characterization of a new SINE family from the genome of a species of interest using as an example a known SINE family in mammals.

Key Words

Short interspersed elements long-interspersed elements retroposons transposable elements mobile DNA genomic database bioinformatics 

References

  1. 1.
    Okada, N. (1991) SINEs. Curr. Opin. Genet. Dev. 1, 498–504.CrossRefPubMedGoogle Scholar
  2. 2.
    Okada, N. (1991) SINEs: short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6, 358–361.CrossRefPubMedGoogle Scholar
  3. 3.
    Hutchison, C. A., Hardies, S. C., Loeb, D. D., Shehee, W. R., and Edgell, M. H. (1989) LINES and related retroposons: Long interspersed sequences in the eucaryotic genome. In: Mobile DNA (Berg, D. E. and Howe, M. M. eds), pp. 593–617, ASM, Washington, DC.Google Scholar
  4. 4.
    Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefPubMedGoogle Scholar
  5. 5.
    Waterston, R. H., Lindblad-Toh, K., Birney, E., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.CrossRefPubMedGoogle Scholar
  6. 6.
    Ohshima, K. and Okada, N. (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 110, 475–490.CrossRefPubMedGoogle Scholar
  7. 7.
    Kramerov, D. A. and Vassetzky, N. S. (2005) Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221.CrossRefPubMedGoogle Scholar
  8. 8.
    Rogers, J. H. (1985) The origin and evolution of retroposons. Int. Rev. Cytol. 93, 187–279.CrossRefPubMedGoogle Scholar
  9. 9.
    Weiner, A. M., Deininger, P. L., and Efstratiadis, A. (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661.CrossRefPubMedGoogle Scholar
  10. 10.
    Rokas, A. and Holland, P. W. (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459.CrossRefPubMedGoogle Scholar
  11. 11.
    Shedlock, A. M. and Okada, N. (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22, 148–160.CrossRefPubMedGoogle Scholar
  12. 12.
    Robertson, H. M. (2002) Evolution of DNA transposons in eukaryotes. In: Mobile DNA II (Craig, N. L., Graigie, R., Gellert, M., and Lambowitz, A. M. eds), pp. 1093–1110, ASM, Washington, DC.Google Scholar
  13. 13.
    Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444.CrossRefPubMedGoogle Scholar
  14. 14.
    Dewannieux, M., Esnault, C., and Heidmann, T. (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Ohshima, K., Hamada, M., Terai, Y., and Okada, N. (1996) The 3′ ends of tRNAderived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol. Cell. Biol. 16, 3756–3764.PubMedGoogle Scholar
  16. 16.
    Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205, 229–243.CrossRefPubMedGoogle Scholar
  17. 17.
    Ullu, E. and Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes. Nature 312, 171–172.CrossRefPubMedGoogle Scholar
  18. 18.
    Nishihara, H., Terai, Y., and Okada, N. (2002) Characterization of novel Alu-and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 19, 1964–1972.PubMedGoogle Scholar
  19. 19.
    Kapitonov, V. V. and Jurka, J. (2003) A novel class of SINE elements derived from 5S rRNA. Mol. Biol. Evol. 20, 694–702.CrossRefPubMedGoogle Scholar
  20. 20.
    Nishihara, H., Smit, A. F., and Okada, N. (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874.CrossRefPubMedGoogle Scholar
  21. 21.
    Nikaido, M., Nishihara, H., Fukumoto, Y., and Okada, N. (2003) Ancient SINEs from African endemic mammals. Mol. Biol. Evol. 20, 522–527.CrossRefPubMedGoogle Scholar
  22. 22.
    Nikaido, M., Matsuno, F., Abe, H., et al. (2001) Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm. Genome 12, 909–915.CrossRefPubMedGoogle Scholar
  23. 23.
    Shimamura, M., Yasue, H., Ohshima, K., et al. (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666–670.CrossRefPubMedGoogle Scholar
  24. 24.
    Nikaido, M., Rooney, A. P., and Okada, N. (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl Acad. Sci. USA 96, 10,261–10,266.CrossRefPubMedGoogle Scholar
  25. 25.
    Nikaido, M., Matsuno, F., Hamilton, H., et al. (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc. Natl Acad. Sci. USA 98, 7384–7389.CrossRefPubMedGoogle Scholar
  26. 26.
    Nikaido, M., Hamilton, H., Makino, H., et al. (2006) Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol. Biol. Evol. 23, 866–873.CrossRefPubMedGoogle Scholar
  27. 27.
    Schmitz, J., Ohme, M., and Zischler, H. (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157, 777–784.PubMedGoogle Scholar
  28. 28.
    Salem, A. H., Ray, D. A., Xing, J., et al. (2003) Alu elements and hominid phylogenetics. Proc. Natl Acad. Sci. USA 100, 12,787–12,791.CrossRefPubMedGoogle Scholar
  29. 29.
    Roos, C., Schmitz, J., and Zischler, H. (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc. Natl Acad. Sci. USA 101, 10,650–10,654.CrossRefPubMedGoogle Scholar
  30. 30.
    Nishihara, H., Satta, Y., Nikaido, M., Thewissen, J. G., Stanhope, M. J., and Okada, N. (2005) A retroposon analysis of Afrotherian phylogeny. Mol. Biol. Evol. 22, 1823–1833.CrossRefPubMedGoogle Scholar
  31. 31.
    Kriegs, J. O., Churakov, G., Kiefmann, M., Jordan, U., Brosius, J., and Schmitz, J. (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol. 4, e91.CrossRefPubMedGoogle Scholar
  32. 32.
    Nishihara, H., Hasegawa, M., and Okada, N. (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl Acad. Sci. USA 103, 9929–9934.CrossRefPubMedGoogle Scholar
  33. 33.
    Watanabe, M., Nikaido, M., Tsuda, T. T., et al. (2006) The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene 365, 57–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Sasaki, T., Takahashi, K., Nikaido, M., Miura, S., Yasukawa, Y., and Okada, N. (2004) First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea. Mol. Biol. Evol. 21, 705–715.CrossRefPubMedGoogle Scholar
  35. 35.
    Piskurek, O., Austin, C. C., and Okada, N. (2006) Sauria SINEs: novel short interspersed retroposable elements that are widespread in reptile genomes. J. Mol. Evol. 62, 630–644.CrossRefPubMedGoogle Scholar
  36. 36.
    Sasaki, T., Yasukawa, Y., Takahashi, K., Miura, S., Shedlock, A. M., and Okada, N. (2006) Extensive morphological convergence and rapid radiation in the evolutionary history of the family Geoemydidae (Old World pond turtles) revealed by SINE insertion analysis. Syst. Biol. in press.Google Scholar
  37. 37.
    Murata, S., Takasaki, N., Saitoh, M., and Okada, N. (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc. Natl Acad. Sci. USA 90, 6995–6999.CrossRefPubMedGoogle Scholar
  38. 38.
    Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (1998) A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol. Biol. Evol. 15, 391–407.PubMedGoogle Scholar
  39. 39.
    Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol. Biol. Evol. 18, 2057–2066.PubMedGoogle Scholar
  40. 40.
    Schmid, C. and Maraia, R. (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Dev. 2, 874–882.CrossRefPubMedGoogle Scholar
  41. 41.
    Springer, M. S., Murphy, W. J., Eizirik, E., and O’Brien, S. J. (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl Acad. Sci. USA 100, 1056–1061.CrossRefPubMedGoogle Scholar
  42. 42.
    Schwartz, S., Kent, W. J., Smit, A., et al. (2003) Human-mouse alignments with BLASTZ. Genome Res. 13, 103–107.CrossRefPubMedGoogle Scholar
  43. 43.
    Blanchette, M., Kent, W. J., Riemer, C., et al. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715.CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.CrossRefPubMedGoogle Scholar
  45. 45.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedGoogle Scholar
  46. 46.
    Endoh, H. and Okada, N. (1986) Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures. Proc. Natl Acad. Sci. USA 83, 251–255.CrossRefPubMedGoogle Scholar
  47. 47.
    Okada, N., Shedlock, A. M., and Nikaido, M. (2004) Retroposon mapping in molecular systematics. Methods Mol. Biol. 260, 189–226.PubMedGoogle Scholar
  48. 48.
    Borodulina, O. R. and Kramerov, D. A. (1999) Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett. 457, 409–413.CrossRefPubMedGoogle Scholar
  49. 49.
    Gauss, D. H., Gruter, F., and Sprinzl, M. (1979) Compilation of tRNA sequences. Nucleic Acids Res. 6, r1–r19.CrossRefPubMedGoogle Scholar
  50. 50.
    Deininger, P. L., Moran, J. V., Batzer, M. A., and Kazazian, H. H. Jr. (2003) Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 13, 651–658.CrossRefPubMedGoogle Scholar
  51. 51.
    Nikaido, M., Piskurek, O., and Okada, N. (2006) Toothed whale monophyly reassessed by SINE insertion analysis: the absence of lineage sorting effects suggests a small population of a common ancestral species. Mol. Phylogenet. Evol. in press.Google Scholar
  52. 52.
    Karolchik, D., Baertsch, R., Diekhans, M., et al. (2003) The UCSC genome browser database. Nucleic Acids Res. 31, 51–54.CrossRefPubMedGoogle Scholar
  53. 53.
    Churakov, G., Smit, A. F., Brosius, J., and Schmitz, J. (2005) A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol. Biol. Evol. 22, 886–893.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2008

Authors and Affiliations

  • Hidenori Nishihara
    • 1
  • Norihiro Okada
    • 1
  1. 1.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations