High-Yield Production and Purification of Recombinant T7-Tag Mature Streptavidin in Glucose-Stressed E. coli

  • Nicolas Humbert
  • Peter Schürmann
  • Andrea Zocchi
  • Jean-Marc Neuhaus
  • Thomas R. Ward
Part of the Methods In Molecular Biology™ book series (MIMB, volume 418)

summary

The overexpression of toxic recombinant proteins is often problematic, leading to either low production levels or inclusion bodies. Streptavidin is no exception and thus the highest production level reported to date for streptavidin is 70 mg/L of functional protein. Herein, we report on the production in Escherichia coli and the purification of a recombinant mature streptavidin bearing a T7-tag. Optimization of critical parameters, including the glucose concentration, the pH and the time of induction as well as the use of BL21(DE3)pLysS cell strain, affords up to 120 mg/L functional streptavidin in soluble form. The yield can be further increased by an osmotic stress during the preculture by adding highly concentrated glucose before the inoculation of the culture medium, thus affording reproducibly 230 mg/L of soluble streptavidin. A single denaturing-renaturing step and affinity chromatography afford highly active tetrameric protein with >3.8/4.0 active sites.

Keywords

Streptavidin E. coli affinity purification biotin osmotic stress 

References

  1. 1.
  2. 2.
    Green, N. M. (1990) Methods Enzymol. 184, 51–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Tausig, F., and Wolf, F. J. (1964) Biochem. Biophys. Res. Commun 14, 205–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Klein, G., Humbert, N., Gradinaru, J., Ivanova, A., Gilardoni, F., Rusbandi, U. E., and Ward, T. R. (2005) Angew. Chem. Int. Ed. Engl. 44 (47), 7764–7767.Google Scholar
  5. 5.
    Skander, M., Humbert, N., Collot, J., Gradinaru, J., Klein, G., Loosli, A., Sauser, J., Zocchi, A., Gilardoni, F., and Ward, T. R. (2004) J. Am. Chem. Soc. 126, 14411–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Letondor, C., Humbert, N., and Ward, T. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 4683–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Collot, J., Gradinaru, J., Humbert, N., Skander, M., Zocchi, A., and Ward, T. R. (2003) J. Am. Chem. Soc. 125, 9030–1.CrossRefPubMedGoogle Scholar
  8. 8.
    Collot, J., Humbert, N., Skander, M., Klein, G., and Ward, T. R. (2004) J. Organomet. Chem. 689, 4868–71.CrossRefGoogle Scholar
  9. 9.
    Suter, M., Cazin, J., Jr., Butler, J. E., and Mock, D. M. (1988) J. Immunol. Methods 113, 83–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Sano, T., and Cantor, C. R. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 142–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Gallizia, A., de Lalla, C., Nardone, E., Santambrogio, P., Brandazza, A., Sidoli, A., and Arosio, P. (1998) Protein Expr. Purif. 14, 192–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Bayer, E. A., Ben-Hur, H., Gitlin, G., and Wilchek, M. (1986) J. Biochem. Biophys. Methods 13, 103–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Nagarajan, V., Ramaley, R., Albertson, H., and Chen, M. (1993) Appl. Environ. Microbiol 59, 3894–8.PubMedGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970) Nature 227, 680–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Chilkoti, A., Tan, P. H., and Stayton, P. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1754–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Kada, G., Falk, H., and Gruber, H. J. (1999) Biochim. Biophys. Acta 1427, 33–43.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicolas Humbert
    • 1
  • Peter Schürmann
    • 1
  • Andrea Zocchi
    • 1
  • Jean-Marc Neuhaus
    • 1
  • Thomas R. Ward
    • 1
  1. 1.Institute of Chemistry, University of NeuchatelNeuchatelSwitzerland

Personalised recommendations