Analyzing Antibody–Fc-Receptor Interactions

  • Falk Nimmerjahn
  • Jeffrey V. Ravetch
Part of the Methods in Molecular Biology™ book series (MIMB, volume 415)


Cellular receptors for immunoglobulins (Fc-receptors; FcR) are central mediators of antibody-triggered effector functions. Immune complex (IC) binding to FcRs results in a variety of reactions such as the release of inflammatory mediators, antibody dependent cellular cytotoxicity (ADCC) and phagocytosis of ICs. Analyzing antibody–FcR (Ab–FcR) interactions in vitro is essential to determine the effector mechanisms, binding characteristics and affinity parameters that will impact and predict antibody activity in vivo. The methods described in this chapter include the generation of ICs and soluble FcR variants, as well as ELISA and FACS-based assays to study Ab–FcR interactions.


Antibody Fc-receptor immune complex ELISA FACS cellular receptors effector functions ADCC antibody mutant 


  1. 1.
    Glennie, M. J., and van de Winkel, J. G. (2003) Renaissance of cancer therapeutic antibodies. Drug Discov Today 8, 503–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Waldmann, T. A. (2003) Immunotherapy: past, present and future. Nat Med 9, 269–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Sanz, L., Blanco, B., and Alvarez-Vallina, L. (2004) Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol 25, 85–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Clynes, R., and Ravetch, J. V. (1995) Cytotoxic antibodies trigger inflammation through Fc receptors Immunity 3, 21–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Cartron, G., Dacheux, L., Salles, G., Solal-Celigny, P., Bardos, P., Colombat, P., and Watier, H. (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene Blood 99, 754–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Weng, W. K., and Levy, R. (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21, 3940–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Weng, W. K., Czerwinski, D., Timmerman, J., Hsu, F. J., and Levy, R. (2004) Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype.break J Clin Oncol 22, 4717–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Nimmerjahn, F., and Ravetch, J. V. (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–2.CrossRefPubMedGoogle Scholar
  9. 9.
    Nimmerjahn, F., and Ravetch, J. V. (2006) Fcgamma receptors: old friends and new family members. Immunity 24, 19–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276, 6591–604.CrossRefPubMedGoogle Scholar
  11. 11.
    Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H., Presta, L. G., Namenuk, A. K., Rae, J., Briggs, J., Xie, D., Stadlen, A., Li, B., and Fox, J. A. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277, 26733–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., and Shitara, K. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278, 3466–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Schuster, M., Umana, P., Ferrara, C., Brunker, P., Gerdes, C., Waxenecker, G., Wiederkum, S., Schwager, C., Loibner, H., Himmler, G., and Mudde, G. C. (2005) Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 65, 7934–41.PubMedGoogle Scholar
  14. 14.
    Maenaka, K., van der Merwe, P. A., Stuart, D. I., Jones, E. Y., and Sondermann, P. (2001) The human low affinity Fcgamma receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J Biol Chem 276, 44898–904.CrossRefPubMedGoogle Scholar
  15. 15.
    Nimmerjahn, F., Bruhns, P., Horiuchi, K., and Ravetch, J. V. (2005) FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Ferrara, C., Stuart, F., Sondermann, P., Brunker, P., and Umana, P. (2006) The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281, 5032–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Getahun, A., and Heyman, B. (2006) How antibodies act as natural adjuvants. Immunol Lett 104, 38–45.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Falk Nimmerjahn
    • 1
  • Jeffrey V. Ravetch
    • 2
  1. 1.Laboratory of Experimental Immunology and ImmunotherapyUniversity of Erlangen-Nuernberg, Nikolaus-Fiebiger-Center for Molecular MedicineErlangenGermany
  2. 2.Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNY

Personalised recommendations