KIR Genotyping and Analysis

Genotyping and Disease Association Analysis
  • Maureen P. Martin
  • Mary Carrington
Part of the Methods in Molecular Biology™ book series (MIMB, volume 415)


The genes encoding the killer immunoglobulin-like receptors (KIR) are situated within a segment of DNA that has undergone expansion and contraction over time due in large part to unequal crossing over. Consequently, individuals exhibit considerable haplotypic variation in terms of gene content. The highly polymorphic human leukocyte antigen (HLA) class I loci encode ligands for the KIR; thus, it is not surprising that KIR genes also show significant allelic polymorphism. As a result of the receptor–ligand relationship between KIR and HLA, functionally relevant KIR–HLA combinations need to be considered in the analysis of these genes as they relate to disease outcomes. This chapter will describe a genotyping method for identifying the presence/absence of the KIR genes and general approaches to data analysis in disease association studies.


KIR genotyping sequence-specific priming (SSP) natural killer (NK) cells HLA class I ligands KIR haplotypes 


  1. 1.
    Cooper, M. A., Fehniger, T. A., and Caligiuri, M. A. (2001) The biology of human natural killer-cell subsets. Trends Immunol 22, 63–40.CrossRefGoogle Scholar
  2. 2.
    Nguyen, K. B., ySalazar-Mather, T. P., Dalod, M. Y., Van Deusen, J. B., Wei, X. Q., Liew, F. Y., Caligiuri, M. A., Durbin, J. E., and Biron, C. A. (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169, 63–87.Google Scholar
  3. 3.
    Storkus, W. J., Alexander, J., Payne, J. A., Dawson, J. R., and Cresswell, P. (1989) Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc Natl Acad Sci USA 86, 63–4.CrossRefGoogle Scholar
  4. 4.
    Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 63–8.CrossRefGoogle Scholar
  5. 5.
    Shimizu, Y., and DeMars, R. (1989) Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cell-mediated lysis is inversely correlated with HLA class I antigen expression. Eur J Immunol 19, 63–51.CrossRefGoogle Scholar
  6. 6.
    Ljunggren, H. G., and Karre, K. (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11, 63–44.CrossRefGoogle Scholar
  7. 7.
    Lanier, L. L. (2005) NK cell recognition. Annu Rev Immunol 23, 63–74.CrossRefGoogle Scholar
  8. 8.
    Uhrberg, M., Valiante, N. M., Shum, B. P., Shilling, H. G., Lienert-Weidenbach, K., Corliss, B., Tyan, D., Lanier, L. L., and Parham, P. (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7, 63–63.CrossRefGoogle Scholar
  9. 9.
    Carrington, M., and Martin, M. P. (2006) The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 298, 63–57.Google Scholar
  10. 10.
    Martin, M. P., Gao, X., Lee, J. H., Nelson, G. W., Detels, R., Goedert, J. J., Buchbinder, S., Hoots, K., Vlahov, D., Trowsdale, J., Wilson, M., O’Brien, S. J., and Carrington, M. (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31, 63–34.Google Scholar
  11. 11.
    Momot, T., Koch, S., Hunzelmann, N., Krieg, T., Ulbricht, K., Schmidt, R. E., and Witte, T. (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50, 63–5.CrossRefGoogle Scholar
  12. 12.
    Luszczek, W., Manczak, M., Cislo, M., Nockowski, P., Wisniewski, A., Jasek, M., and Kusnierczyk, P. (2004) Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris. Hum Immunol 65, 758–66.CrossRefPubMedGoogle Scholar
  13. 13.
    van der Slik, A. R., Koeleman, B. P., Verduijn, W., Bruining, G. J., Roep, B. O., and Giphart, M. J. (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 52, 63–42.Google Scholar
  14. 14.
    Yen, J. H., Moore, B. E., Nakajima, T., Scholl, D., Schaid, D. J., Weyand, C. M., and Goronzy, J. J. (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193, 63–67.CrossRefGoogle Scholar
  15. 15.
    Martin, M. P., Nelson, G., Lee, J. H., Pellett, F., Gao, X., Wade, J., Wilson, M. J., Trowsdale, J., Gladman, D., and Carrington, M. (2002) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169, 63–22.Google Scholar
  16. 16.
    Nelson, G. W., Martin, M. P., Gladman, D., Wade, J., Trowsdale, J., and Carrington, M. (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173, 63–6.Google Scholar
  17. 17.
    Butsch Kovacic, M., Martin, M., Gao, X., Fuksenko, T., Chen, C. J., Cheng, Y. J., Chen, J. Y., Apple, R., Hildesheim, A., and Carrington, M. (2005) Variation of the killer cell immunoglobulin-like receptors and HLA-C genes in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 14, 63–7.CrossRefGoogle Scholar
  18. 18.
    Hiby, S. E., Walker, J. J., O’Shaughnessy K, M., Redman, C. W., Carrington, M., Trowsdale, J., and Moffett, A. (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200, 957–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Artavanis-Tsakonas, K., Eleme, K., McQueen, K. L., Cheng, N. W., Parham, P., Davis, D. M., and Riley, E. M. (2003) Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 171, 5396–405.PubMedGoogle Scholar
  20. 20.
    Satsangi, J., Jewell, D. P., Welsh, K., Bunce, M., and Bell, J. I. (1994) Effect of heparin on polymerase chain reaction. Lancet 343, 63–10.CrossRefGoogle Scholar
  21. 21.
    Bunce, M., O’Neill, C. M., Barnardo, M. C., Krausa, P., Browning, M. J., Morris, P. J., and Welsh, K. I. (1995) Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46, 355–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Rajagopalan, S., Bryceson, Y. T., Kuppusamy, S. P., Geraghty, D. E., van der Meer, A., Joosten, I., and Long, E. O. (2006) Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol 4, e9.CrossRefPubMedGoogle Scholar
  23. 23.
    Gomez-Lozano, N., Estefania, E., Williams, F., Halfpenny, I., Middleton, D., Solis, R., and Vilches, C. (2005) The silent KIR3DP1 gene (CD158c) is transcribed and might encode a secreted receptor in a minority of humans, in whom the KIR3DP1, KIR2DL4 and KIR3DL1/KIR3DS1 genes are duplicated. Eur J Immunol 35, 63–24.CrossRefGoogle Scholar
  24. 24.
    Martin, M. P., Bashirova, A., Traherne, J., Trowsdale, J., and Carrington, M. (2003) Cutting edge: expansion of the KIR locus by unequal crossing over. J Immunol 171, 63–5.Google Scholar
  25. 25.
    Shilling, H. G., Lienert-Weidenbach, K., Valiante, N. M., Uhrberg, M., and Parham, P. (1998) Evidence for recombination as a mechanism for KIR diversification. Immunogenetics 48, 413–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Gomez-Lozano, N., Gardiner, C. M., Parham, P., and Vilches, C. (2002) Some human KIR haplotypes contain two KIR2DL5 genes: KIR2DL5A and KIR2DL5B. Immunogenetics 54, 63–9.Google Scholar
  27. 27.
    Hsu, K. C., Chida, S., Dupont, B., and Geraghty, D. E. (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 190, 63–52.CrossRefGoogle Scholar
  28. 28.
    Hsu, K. C., Liu, X. R., Selvakumar, A., Mickelson, E., O’Reilly, R. J., and Dupont, B. (2002) Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol 169, 63–29.Google Scholar
  29. 29.
    Shilling, H. G., Guethlein, L. A., Cheng, N. W., Gardiner, C. M., Rodriguez, R., Tyan, D., and Parham, P. (2002) Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 168, 63–15.Google Scholar
  30. 30.
    Uhrberg, M., Parham, P., and Wernet, P. (2002) Definition of gene content for nine common group B haplotypes of the Caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 54, 63–9.CrossRefGoogle Scholar
  31. 31.
    Kikuchi-Maki, A., Yusa, S., Catina, T. L., and Campbell, K. S. (2003) KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-gamma production. J Immunol 171, 63–25.Google Scholar
  32. 32.
    Rajagopalan, S., Fu, J., and Long, E. O. (2001) Cutting edge: induction of IFN-gamma production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol 167, 63–81.Google Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Maureen P. Martin
    • 1
  • Mary Carrington
    • 1
  1. 1.Laboratory of Genomic DiversitySAIC-Frederick, Inc., NCI-FrederickFrederick

Personalised recommendations