Development of Bacterial Vectors for Tumor-Targeted Gene Therapy

Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 542)

Summary

Gene therapy holds great promise for the treatment of cancer. The success of the strategy relies on effective gene transfer into tumor microenvironments. Although a variety of gene delivery vehicles, such as viral vectors, has been developed, most of them suffer from some limitations, including inadequate tumor targeting, inefficient gene transfer, and potential toxicity. This situation suggests that it is necessary to develop novel vectors for effective tumor-targeted gene transfer. The discovery of tumor-targeting bacteria has spurred interest in the use of these bacteria as gene transfer vectors. In this review, we focus on the current status of the development of bacterial vectors for cancer gene therapy and highlight some of the directions that the field may take.

Keywords

Administration routes anti-angiogenesis bacterial vector cancer gene therapy cytokine gene expression prodrug therapy RNA interference tumor targeting 

Notes

Acknowledgments

The authors thank Dr. Brooks Low, Dr. John Pawelek, Dr. Yi Sun, and Dr. Zhen Wang for critical reading of the manuscript and editorial work. The authors are grateful to grants from the Chinese National Nature Sciences Foundation (30425009, 30500637) and the Jiangsu Provincial Nature Sciences Foundation (BK2007715).

References

  1. 1.
    Cross D, Burmester JK. (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res. 4:218–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Palmer DH, Young LS, Mautner V. (2006) Cancer gene-therapy: clinical trials. Trends Biotechnol. 24:76–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Seth P. (2005) Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther. 4:512–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Dong JY, Woraratanadharm J. (2005) Gene therapy vector design strategies for the treatment of cancer. Future Oncol. 1:361–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Möse JR, Möse G. (1964) Oncolysis by Clostridia. I. Activity of Clostridium Butyricum (M-55) and Other nonpathogenic Clostridia against the Ehrlich carcinoma. Cancer Res. 24:212–6Google Scholar
  6. 6.
    6.. Gericke D and Engelbart K. (1964) Oncolysis by Clostridia. II. Experiments on a Tumor Spectrum With a Variety of Clostridia in Combination with Heavy Metal. Cancer Res. 24: 217–221PubMedGoogle Scholar
  7. 7.
    Kimura NT, Taniguchi S, Aoki K, Baba T. (1980) Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 40:2061–8.PubMedGoogle Scholar
  8. 8.
    Pawelek JM, Low KB, Bermudes D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57:4537–44.PubMedGoogle Scholar
  9. 9.
    Sznol M, Lin SL, Bermudes D, Zheng LM, King I. (2000) Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 105:1027–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Bermudes D, Low KB, Pawelek J, Feng M, Belcourt M, Zheng LM, King I. (2001) Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev. 18:219–33.PubMedGoogle Scholar
  11. 11.
    Pawelek JM, Low KB, Bermudes D. (2003) Bacteria as tumour-targeting vectors. Lancet Oncol. 4:548–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Ryan RM, Green J, Lewis CE. (2006) Use of bacteria in anti-cancer therapies. Bioessays. 28:84–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Schmidt W, Fabricius EM, Schneeweiss U. (2006) The tumour-Clostridium phenomenon: 50 years of developmental research. Int J Oncol. 29:1479–92.PubMedGoogle Scholar
  14. 14.
    Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P, Theys J. (2007) Potential and limitations of bacterial-mediated cancer therapy. Front Biosci. 12:3880–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Brown JM, Wilson WR. (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou J, Schmid T, Schnitzer S, Brune B. (2006) Tumor hypoxia and cancer progression. Cancer Lett. 237:10–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci. 98:15155–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA Jr, Pomper M, Abusedera M, Wahl RL, Kinzler KW, Zhou S, Huso DL, Vogelstein B. (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. 101:15172–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Avogadri F, Martinoli C, Petrovska L, Chiodoni C, Transidico P, Bronte V, Longhi R, Colombo MP, Dougan G, Rescigno M. (2005) Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res. 65:3920–7PubMedCrossRefGoogle Scholar
  20. 20.
    Jia LJ, Wei DP, Sun QM, Jin GH, Li SF, Huang Y, Hua ZC. (2007) Tumor-targeting Salmonella typhimurium improves cyclophosphamide chemotherapy at maximum tolerated dose and low-dose metronomic regimens in a murine melanoma model. Int J Cancer. 121:666–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee CH, Wu CL, Shiau AL. (2007) Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int J Cancer. (in print).21. 21. Lee CH, Wu CL, Shiau AL. (2007) Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int J Cancer. (in print).Google Scholar
  22. 22.
    Rosenberg SA, Spiess PJ, Kleiner DE. (2002) Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother. 25:218–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Rintoul RC, Sethi T. (2001) The role of extracellular matrix in small-cell lung cancer. Lancet Oncol. 2:437–42PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou S, Bettegowda C, Agrawal N. (2004) combination bacteriolytic cancer therapy: attacking cancer form inside out. Discov Med. 4:33–37PubMedGoogle Scholar
  25. 25.
    Waehler R, Russell SJ, Curiel DT. (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8:573–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, Zhang X, Diaz LA Jr, Velculescu VE, Parmigiani G, Kinzler KW, Vogelstein B, Zhou S. (2006) The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol. 24:1573–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Baker S, Dougan G. (2007) The genome of Salmonella enterica serovar Typhi. Clin Infect Dis. 45:S29–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 17:37–41.PubMedGoogle Scholar
  29. 29.
    Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 20:142–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Low KB, Ittensohn M, Luo X, Zheng LM, King I, Pawelek JM, Bermudes D. (2004) Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med. 90:47–60.PubMedGoogle Scholar
  31. 31.
    Diaz LA Jr, Cheong I, Foss CA, Zhang X, Peters BA, Agrawal N, Bettegowda C, Karim B, Liu G, Khan K, Huang X, Kohli M, Dang LH, Hwang P, Vogelstein A, Garrett-Mayer E, Kobrin B, Pomper M, Zhou S, Kinzler KW, Vogelstein B, Huso DL. (2005) Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol Sci. 88:562–75.PubMedCrossRefGoogle Scholar
  32. 32.
    32.. Cunningham C, Nemunaitis J. (2001) A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001.Hum Gene Ther 12: 1594–6PubMedGoogle Scholar
  33. 33.
    33.. Carey R, Holland J, Whang H, Neter E, Bryant B. (1967) Clostridial oncolysis in man. Eur J Cancer. 3, 37–46Google Scholar
  34. 34.
    Heppner F, Mose JR. (1978) The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir. 42:123–5CrossRefGoogle Scholar
  35. 35.
    Luo X, Li Z, Lin S, Le T, Ittensohn M, Bermudes D, Runyab JD, Shen SY, Chen J, King IC, Zheng LM. (2001) Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res. 12:501–8.PubMedGoogle Scholar
  36. 36.
    Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA. 104:10170–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Lambin P, Theys J, Landuyt W, Rijken P, van der Kogel A, van der Schueren E, Hodgkiss R, Fowler J, Nuyts S, de Bruijn E, Van Mellaert L, Anne J. (1998) Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe. 4:183–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S. (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7:269–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Portsmouth D, Hlavaty J, Renner M. (2007) Suicide genes for cancer therapy. Mol Aspects Med. 28:4–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Xu G, McLeod HL. (2001) Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res. 7:3314–24.PubMedGoogle Scholar
  41. 41.
    Fox ME, Lemmon MJ, Mauchline ML, Davis TO, Giaccia AJ, Minton NP, Brown JM. (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3:173–8.PubMedGoogle Scholar
  42. 42.
    Lemmon MJ, van Zijl P, Fox ME, Mauchline ML, Giaccia AJ, Minton NP, Brown JM. (1997) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4:791–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Theys J, Landuyt W, Nuyts S, Van Mellaert L, van Oosterom A, Lambin P, Anne J. (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8:294–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Nuyts S, Theys J, Landuyt W, van Mellaert L, Lambin P, Anne J. (2001) Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 21:857–61.PubMedGoogle Scholar
  45. 45.
    Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anne J, Burke PJ, Durre P, Wouters BG, Minton NP, Lambin P. (2006) Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer. 95:1212–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Pawelek JM, Low KB, Bermudes D. (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57:4537–44.PubMedGoogle Scholar
  47. 47.
    Zheng LM, Luo X, Feng M, Li Z, Le T, Ittensohn M, Trailsmith M, Bermudes D, Lin SL, King IC. (2000) Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol Res. 12:127–35.PubMedGoogle Scholar
  48. 48.
    King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, Le T, Ittensohn M, Mao J, Lang W, Runyan JD, Luo X, Li Z, Zheng LM. (2002) Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther. 13:1225–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura T, Sasaki T, Fujimori M, Yazawa K, Kano Y, Amano J, Taniguchi S. (2002) Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem. 66:2362–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito K, Amano J, Taniguchi S. (2006) Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci. 97:649–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Hamaji Y, Fujimori M, Sasaki T, Matsuhashi H, Matsui-Seki K, Shimatani-Shibata Y, Kano Y, Amano J, Taniguchi S. (2007) Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy. Biosci Biotechnol Biochem. 71:874–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Folkman J. (1989) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6.Google Scholar
  53. 53.
    Kerbel RS, Kamen BA. (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 4: 423–36PubMedCrossRefGoogle Scholar
  54. 54.
    Persano L, Crescenzi M, Indraccolo S. (2007) Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Aspects Med. 28:87–114PubMedCrossRefGoogle Scholar
  55. 55.
    Lee CH, Wu CL, Shiau AL. (2005) Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12, 175–84PubMedCrossRefGoogle Scholar
  56. 56.
    Lee CH, Wu CL Shiau AL. (2004) Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med.6, 1382–93SPubMedCrossRefGoogle Scholar
  57. 57.
    Li X, Fu GF, Fan YR, Liu WH, Liu XJ, Wang JJ, Xu GX. (2003) Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 10:105–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Fu GF, Li X, Hou YY, Fan YR, Liu WH, Xu GX. (2005) Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther. 12:133–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Eckmann L, Kagnoff MF. (2001) Cytokines in host defense against Salmonella. Microbes Infect. 3:1191–4PubMedCrossRefGoogle Scholar
  60. 60.
    Cao Y. (2001) Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol. 33:357–69CrossRefGoogle Scholar
  61. 61.
    Jia LJ, Xu HM, Ma DY, Hu QG, Huang XF, Jiang WH, Li SF, Jia KZ, Huang QL, Hua ZC. (2005) Enhanced therapeutic effect by combination of tumor-targeting Salmonella and endostatin in murine melanoma model. Cancer Biol Ther. 4:840–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, Loganzo F, Greenberger L, Barkoczy J, Pettit GR, Smith AB 3rd, Gurulingappa H, Khan S, Parmigiani G, Kinzler KW, Zhou S, Vogelstein B. (2004) Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther. 3:326–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Rescigno M, Avogadri F, Curigliano G. (2007) Challenges and prospects of immunotherapy as cancer treatment. Biochim Biophys Acta. 1776:108–23.PubMedGoogle Scholar
  64. 64.
    Podhajcer OL, Lopez MV, Mazzolini G. (2007) Cytokine gene transfer for cancer therapy. Cytokine Growth Factor Rev. 18:183–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res. 13:4677–85.PubMedCrossRefGoogle Scholar
  66. 66.
    66.Theys J, Nuyts S, Landuyt W, Van Mellaert L, Dillen C, Bohringer M, Durre P, Lambin P, Anne J. (1999) Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha. Appl Environ Microbiol. 65:4295–300.PubMedGoogle Scholar
  67. 67.
    Nuyts S, Van Mellaert L, Theys J, Landuyt W, Bosmans E, Anne J, Lambin P. (2001) Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8:1197–201.PubMedCrossRefGoogle Scholar
  68. 68.
    Lin S, Spinka T, Le T, Pianta T, King I, Belcourt F, Li Z. (1999) Tumor-directed delivery and amplification of tumor-necrosis factor-alpha (TNF) by attenuated Salmonella typhimurium. Clin Cancer Res. 5, 3822Google Scholar
  69. 69.
    Barbe S, Van Mellaert L, Theys J, Geukens N, Lammertyn E, Lambin P, Anne J. (2005) Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol Lett. 246:67–73.PubMedCrossRefGoogle Scholar
  70. 70.
    Loeffler M, Le'Negrate G, Krajewska M, Reed JC. (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci. 104:12879–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Iorns E, Lord CJ, Turner N, Ashworth A. (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 6:556–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim DH, Rossi JJ. (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. (2006) Delivery of RNA interference. Cell Cycle. 5:2103–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Xiang S, Fruehauf J, Li CJ. (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 24:697–702.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, Wang J, Yu H, Hu J, Kalvakolanu DV, Kopecko DJ, Zhao X, Xu DQ. (2007) Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67:5859–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Sun Y. (2006) E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 8(8):645–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Bandres E, Agirre X, Ramirez N, Zarate R, Garcia-Foncillas J. (2007) MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol. 26:273–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Esquela-Kerscher A, Slack FJ. (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 6:259–69.PubMedCrossRefGoogle Scholar
  79. 79.
    Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, Goebel W, Szalay AA. (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 22:313–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. (2007) Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol. 297:151–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM. (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci. 102:755–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J, Lin SL, Luo X, Miller SI, Zheng L, King I, Pawelek JM, Bermudes D. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol. 17:37–41.PubMedGoogle Scholar
  83. 83.
    Pawelek JM, Sodi S, Chakraborty AK, Platt JT, Miller S, Holden DW, Hensel M, Low KB. (2002) Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther. 9:813–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee CH, Wu CL, Tai YS, Shiau AL. (2005) Systemic administration of attenuated Salmonella choleraesuis in combination with cisplatin for cancer therapy. Mol Ther. 11:707–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Theys J, Landuyt W, Nuyts S, Van Mellaert L, Bosmans E, Rijnders A, Van Den Bogaert W, van Oosterom A, Anne J, Lambin P. (2001) Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol. 30:37–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J, Kaufman HL. (2007) Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine. 25:4183–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Jaracz S, Chen J, Kuznetsova LV, Ojima I. (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem. 13:5043–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Mori T. (2004) Cancer-specific ligands identified from screening of peptide-display libraries. Curr Pharm Des. 10:2335–43.PubMedCrossRefGoogle Scholar
  89. 89.
    Schmidt FR. (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol. 65:363–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Rana TM. (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 8:23–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Palumbo RN, Wang C. (2006) Bacterial invasin: structure, function, and implication for targeted oral gene delivery. Curr Drug Deliv. 3:47–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Anderson JC, Clarke EJ, Arkin AP, Voigt CA. (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 355:619–27.PubMedCrossRefGoogle Scholar
  93. 93.
    Xu F, Ulmer JB. (2003) Attenuated salmonella and Shigella as carriers for DNA vaccines. J Drug Target. 11:481–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Loessner H, Endmann A, Leschner S, Bauer H, Zelmer A, Zur Lage S, Westphal K, Weiss S. (2007) Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol. (in print).Google Scholar
  95. 95.
    Hess J, Gentschev I, Miko D, Welzel M, Ladel C, Goebel W, Kaufmann SH. (1996) Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci. USA. 93:1458–63.PubMedCrossRefGoogle Scholar
  96. 96.
    Gentschev I, Dietrich G, Spreng S, Kolb-Maurer A, Brinkmann V, Grode L, Hess J, Kaufmann SH, Goebel W. (2001) Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine. 19:2621–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Goussard S, Grillot-Courvalin C, Courvalin P. (2003) Eukaryotic promoters can direct protein synthesis in Gram-negative bacteria. J Mol Microbiol Biotechnol. 6:211–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J. (2001) The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res. 155:716–23.PubMedCrossRefGoogle Scholar
  99. 99.
    Mengesha A, Dubois L, Lambin P, Landuyt W, Chiu RK, Wouters BG, Theys J. (2006) Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol Ther. 5:1120–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Weber W, Fussenegger M. (2006) Pharmacologic transgene control systems for gene therapy. J Gene Med. 8:535–56.PubMedCrossRefGoogle Scholar
  101. 101.
    Loessner H, Endmann A, Leschner S, Westphal K, Rohde M, Miloud T, Hammerling G, Neuhaus K, Weiss S. (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol. 9:1529–37.PubMedCrossRefGoogle Scholar
  102. 102.
    Scott SD, Greco O. (2004) Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev. 23:269–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Mezhir JJ, Schmidt H, Yamini B, Senzer NN, Posner MC, Kufe DW, Weichselbaum RR. (2005) Chemo-inducible gene therapy. Anticancer Drugs. 16:1053–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC. (2007) Oral delivery of tumor-targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci. 98:1107–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Luo Y, Zhou H, Mizutani M, et al. (2003) Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine. Proc Natl Acad Sci USA. 100:8850–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Luo Y, Zhou H, Mizutani M, et al. (2005) A DNA vaccine targeting Fos-related antigen 1enhanced by IL-18 induces long-lived T-cell memory against tumor recurrence. Cancer Res. 65:3419–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Echeverri CJ, Perrimon N. (2006) High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet. 7:373–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, Lam LT, Dave S, Yang L, Powell J, Staudt LM. (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 441:106–10.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life SciencesNanjing UniversityNanjingChina
  2. 2.Department of Radiation OncologyUniversity of Michigan Comprehensive Cancer CenterAnn ArborUSA

Personalised recommendations