Riboswitches pp 301-319 | Cite as

A Green Fluorescent Protein (GFP)-Based Plasmid System to Study Post-Transcriptional Control of Gene Expression In Vivo

  • Johannes H. Urban
  • Jörg Vogel
Part of the Methods in Molecular Biology book series (MIMB, volume 540)


Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression, which mainly modulate the translation of trans-encoded mRNAs. Typically, these molecules are 50–200 nucleotides in size and do not contain expressed open reading frames (ORFs). In Escherichia coli, about 70 members of this group have been identified to date and further estimates assume hundreds of sRNAs per bacterial genome. Regulation of gene expression by sRNAs is predominantly mediated by physical sRNA/target mRNA interactions that are based on short and imperfect complementarity. Although the contribution of sRNAs to overall bacterial gene regulation is now being appreciated, the function of many sRNAs is still unknown and their targets await to be uncovered. We recently developed a modular two-plasmid system, based on the green fluorescent protein (GFP) as non-invasive reporter of gene expression, to rapidly monitor the regulatory potential of sRNA/target mRNA pairs under investigation in vivo. The specialized reporter plasmid series also provides a suitable platform to study the function of cis-encoded riboregulators such as natural riboswitches, thermosensors, or engineered aptamer-based regulatory switches.

Key words

Green fluorescent protein Post-transcriptional control Small non-coding RNA Riboregulator 


  1. 1.
    Vogel, J. and Wagner, E.G. (2007). Target identification of regulatory sRNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270PubMedCrossRefGoogle Scholar
  2. 2.
    Aiba, H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139PubMedCrossRefGoogle Scholar
  3. 3.
    Valentin-Hansen, P., Eriksen, M. and Udesen, C. (2004). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51, 1525–1533PubMedCrossRefGoogle Scholar
  4. 4.
    Mizuno, T., Chou, M.Y. and Inouye, M. (1984). A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. U.S.A. 81, 1966–1970PubMedCrossRefGoogle Scholar
  5. 5.
    Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. and Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. U.S.A. 95, 12462–12467PubMedCrossRefGoogle Scholar
  6. 6.
    Lease, R.A., Cusick, M.E. and Belfort, M. (1998). Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. U.S.A. 95, 12456–12461PubMedCrossRefGoogle Scholar
  7. 7.
    Møller, T., Franch, T., Udesen, C., Gerdes, K. and Valentin-Hansen, P. (2002). Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16, 1696–1706Google Scholar
  8. 8.
    Massé, E. and Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99, 4620–4625PubMedCrossRefGoogle Scholar
  9. 9.
    Urban, J.H. and Vogel, J. (2007). Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 35, 1018–1037PubMedCrossRefGoogle Scholar
  10. 10.
    Sittka, A., Pfeiffer, V., Tedin, K. and Vogel, J. (2007). The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63, 193–217PubMedCrossRefGoogle Scholar
  11. 11.
    Scholz, O., Thiel, A., Hillen, W. and Niederweis, M. (2000). Quantitative analysis of gene expression with an improved green fluorescent protein. Eur. J. Biochem. 267, 1565–1570PubMedCrossRefGoogle Scholar
  12. 12.
    Lutz, R. and Bujard, H. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jager, J.G., Hüttenhofer, A. and Wagner, E.G. (2003). RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 31, 6435–6443PubMedCrossRefGoogle Scholar
  14. 14.
    Bensing, B.A., Meyer, B.J. and Dunny, G.M. (1996). Sensitive detection of bacterial transcription initiation sites and differentiation from RNA processing sites in the pheromone-induced plasmid transfer system of Enterococcus faecalis. Proc. Natl. Acad. Sci. U.S.A. 93, 7794–7799PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro, J.A. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, S., Zhang, A., Blyn, L.B. and Storz, G. (2004). MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186, 6689–6697PubMedCrossRefGoogle Scholar
  17. 17.
    Udekwu, K.I., Darfeuille, F., Vogel, J., Reimegard, J., Holmqvist, E. and Wagner, E.G. (2005). Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19, 2355–2366PubMedCrossRefGoogle Scholar
  18. 18.
    Urban, J.H., Papenfort, K., Thomsen, J., Schmitz, R.A. and Vogel, J. (2007). A conserved small RNA promotes discoordinate expression of the glmUS operon mRNA to activate GlmS synthesis. J. Mol. Biol. 373, 521–528PubMedCrossRefGoogle Scholar
  19. 19.
    Urban, J.H. and Vogel, J. (2008). Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 6, e64PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Johannes H. Urban
    • 1
  • Jörg Vogel
    • 1
  1. 1.Max Planck Institute for Infection BiologyRNA Biology GroupGermany

Personalised recommendations