PCR–ELISA for High-Throughput Blood Group Genotyping

  • Maryse St-Louis
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 496)


During the last decade, blood bank specialists have shown an increased interest in molecular analyses to complement serology work in determining blood group antigens. To efficiently respond to the numerous demands made for hemolytic disease of the newborn cases and polytransfused patients, we designed an inexpensive colorimetric high-throughput method to genotype several blood group antigens rapidly. Three simple steps are required to perform this technique: genomic DNA extraction, PCR amplification, and amplicon detection by a microplate ELISA. The 96-well plate format facilitates the manipulations and enables the analysis of multiple samples at once or the analysis of multiple antigens for fewer samples.

The most common and clinically relevant minor blood group antigens were adapted to this method and are described in this work: Rh (D, C, c, E, e), Kell (K, k), Duffy (Fya, Fyb), and Kidd (Jka, Jkb). Other blood group antigens could be easily tested this way as long as their molecular basis is well established.

Key Words

Blood groups genotyping PCR–ELISA microplate biotin DIG 



The author would like to thank Jos’ee Perreault for her technical support and for reviewing the manuscript.


  1. 1.
    St-Louis, M., Perreault, J., Lemieux, R. (2003) Extended blood grouping of blood donors with automatable PCR–ELISA genotyping. Transfusion 43, 1126–1132.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonvicini, F., Gallinella, G., Cricca, M., Venturoli, S., Musiani, M., Zerbini, M. (2004) A new primer set improves the efficiency of competitive PCR–ELISA for the detection of B19 DNA. J Clin Virol 30, 134–136.CrossRefPubMedGoogle Scholar
  3. 3.
    Kim, J. -W., Shim, J. -H., Park, J. -W., Jang, W. -C., Chang, H. K., Song, I. H., Baek, S. -Y., Lee, S. -H., Yoon, D. -Y., Park, S. -N. (2005) Development of PCR–ELISA for the detection of hepatitis B virus x gene expression and clinical application. J Clin Lab Anal 19,139–145.CrossRefPubMedGoogle Scholar
  4. 4.
    Daeschlein, G., Assadian, O., Daxboeck, F., Kramer, A. (2006) Multiplex PCR–ELISA for direct detection of MRSA in nasal swabs advantageous for rapid identification of non-MRSA carriers. Eur J Clin Microbiol Infect Dis 25, 328–330.CrossRefPubMedGoogle Scholar
  5. 5.
    Heidari, A., Dittrich, S., Jelinek, T., Kheirandish, A., Banihashemi, K., Keshavarz, H. (2007) Genotypes and in vivo resistance of Plasmodium falciparum isolates in an endemic region of Iran. Parasitol Res 100, 589–592.CrossRefPubMedGoogle Scholar
  6. 6.
    Mas, V., Alvarellos, T., Albano, S., de Boccardo, G., Giraudo, C., Garrett, C. T., Ferreira-Gonzalez, A. (1999) Utility of cytomegalovirus viral load in renal transplant patients in Argentina. Transplantation 67, 1050–1055.CrossRefPubMedGoogle Scholar
  7. 7.
    Rapier, J. M., Villamarzo, Y., Schochetman, G., Ou, C. -Y., Brakel, C. L., Donegan, J., Maltzman, W., Lee, S., Kirtikar, D., Gatica, D. (1993) Nonradioactive, colorimetric microplate hybridization assay for detecting amplified human immunodeficiency virus DNA. Clin Chem 39, 244–247.PubMedGoogle Scholar
  8. 8.
    Fletcher, H. A., Barton, R. C., Verweij, P. E., Evans, E. G. V. (1998) Detection of Aspergillus fumigatus PCR products by a microtitre plate based DNA hybridisation assay. J Clin Pathol 51, 617–620.CrossRefPubMedGoogle Scholar
  9. 9.
    St-Louis, M., Thibault, L., Chevrier, M.-C., Perreault, J., Richard, M., de Grandmont, M. J., Beauséjour, A., Nolin, M., Guérin, M., Vachon, A., Lemieux, R. (2003) In-house development and production of a WNV NAT assay for possible contingency testing of blood donors in June 2003. Transfusion 43, 128A (meeting abstract).CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maryse St-Louis
    • 1
  1. 1.Research&Development, Héma-QuébecCanada

Personalised recommendations