Oligonucleotide Microarrays for Identification of Microbial Pathogens and Detection of Their Virulence-Associated or Drug-Resistance Determinants

  • Dmitriy V. Volokhov
  • Hyesuk Kong
  • Keith Herold
  • Vladimir E. Chizhikov
  • Avraham Rasooly
Part of the Methods in Molecular Biology book series (MIMB, volume 671)


Microarrays are spatially ordered arrays with ligands chemically immobilized in discrete spots on a solid matrix, usually a microscope slide. Microarrays are a high-throughput large-scale screening system enabling simultaneous identification of a large number of labeled target molecules (up to several hundred thousand) that bind specifically to the immobilized ligands of the array. DNA microarrays represent a promising tool for clinical, environmental, and industrial microbiology since the technology allows relatively rapid identification of large number of genetic determinants simultaneously, providing detailed genomic level information regarding the pathogen species, including identification of their virulence-associated factors and the presence of antibiotic resistance genes. In this chapter, we describe key aspects and methodologies important for the development and use of DNA microarrays for microbial diagnostics.

Key words

Microarray Microbial pathogens Virulence factors Food safety 


  1. 1.
    Gillespie, D. and S. Spiegelman, A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol, 1965. 12(3): pp. 829–42.CrossRefGoogle Scholar
  2. 2.
    Southern, E.M., Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975. 98(3): pp. 503–17.CrossRefGoogle Scholar
  3. 3.
    Alwine, J.C., D.J. Kemp, and G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA, 1977. 74(12): pp. 5350–4.CrossRefGoogle Scholar
  4. 4.
    Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (Elisa) quantitative assay of immunoglobulin-G. Immunochemistry, 1971. 8(9): pp. 871–4.CrossRefGoogle Scholar
  5. 5.
    Kafatos, F.C., C.W. Jones, and A. Efstratiadis, Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res, 1979. 7(6): pp. 1541–52.CrossRefGoogle Scholar
  6. 6.
    Ekins, R., F. Chu, and J. Micallef, High specific activity chemiluminescent and fluorescent markers: their potential application to high sensitivity and ‘multi-analyte’ immunoassays. J Biolumin Chemilumin, 1989. 4(1): pp. 59–78.CrossRefGoogle Scholar
  7. 7.
    Ekins, R., F. Chu, and E. Biggart, Multispot, multianalyte, immunoassay. Ann Biol Clin (Paris), 1990. 48(9): pp. 655–66.Google Scholar
  8. 8.
    Ekins, R. and F.W. Chu, Microarrays: their origins and applications. Trends Biotechnol, 1999. 17(6): pp. 217–8.CrossRefGoogle Scholar
  9. 9.
    Gupta, R.S. and E. Griffiths, Critical issues in bacterial phylogeny. Theor Popul Biol, 2002. 61(4): pp. 423–34.CrossRefGoogle Scholar
  10. 10.
    Gupta, R.S., The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol, 2004. 30(2): pp. 123–43.CrossRefGoogle Scholar
  11. 11.
    Karlin, S. and L. Brocchieri, Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol, 1998. 47(5): pp. 565–77.CrossRefGoogle Scholar
  12. 12.
    Gupta, R.S. and V. Johari, Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria. J Mol Evol, 1998. 46(6): pp. 716–20.CrossRefGoogle Scholar
  13. 13.
    Ludwig, W. and K.H. Schleifer, Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev, 1994. 15(2–3): pp. 155–73.CrossRefGoogle Scholar
  14. 14.
    Anthony, R.M., T.J. Brown, and G.L. French, Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol, 2000. 38(2): pp. 781–8.Google Scholar
  15. 15.
    Olsen, G.J., et al., Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986. 40: pp. 337–65.CrossRefGoogle Scholar
  16. 16.
    Hartman, A.B., et al., Sequence and molecular characterization of a multicopy invasion plasmid antigen gene, ipaH, of Shigella flexneri. J Bacteriol, 1990. 172(4): pp. 1905–15.Google Scholar
  17. 17.
    Nagano, I., et al., Detection of verotoxin-producing Escherichia coli O157:H7 by multiplex polymerase chain reaction. Microbiol Immunol, 1998. 42(5): pp. 371–6.Google Scholar
  18. 18.
    Yu, J. and J.B. Kaper, Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol, 1992. 6(3): pp. 411–7.CrossRefGoogle Scholar
  19. 19.
    Sazhin, O.V. and S.F. Borisov, Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces. J Vac Sci Technol A, 2001. 19(5): pp. 2499–503.CrossRefGoogle Scholar
  20. 20.
    Chizhikov, V., et al., Microarray analysis of microbial virulence factors. Appl Environ Microbiol, 2001. 67(7): pp. 3258–63.CrossRefGoogle Scholar
  21. 21.
    Volokhov, D., et al., Identification of Listeria species by microarray-based assay. J Clin Microbiol, 2002. 40(12): pp. 4720–8.CrossRefGoogle Scholar
  22. 22.
    Volokhov, D., et al., Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. J Clin Microbiol, 2003. 41(9): pp. 4071–80.CrossRefGoogle Scholar
  23. 23.
    Al-Khaldi, S.F., et al., Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol Cell Probes, 2004. 18(6): pp. 359–67.CrossRefGoogle Scholar
  24. 24.
    Sergeev, N., et al., Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J Clin Microbiol, 2004. 42(5): pp. 2134–43.CrossRefGoogle Scholar
  25. 25.
    Volokhov, D., et al., Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis, 2004. 49(3): pp. 163–71.CrossRefGoogle Scholar
  26. 26.
    Sergeev, N., et al., Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron, 2004. 20(4): pp. 684–98.CrossRefGoogle Scholar
  27. 27.
    Wilson, K.H., et al., High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol, 2002. 68(5): pp. 2535–41.CrossRefGoogle Scholar
  28. 28.
    Wilson, W.J., et al., Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes, 2002. 16(2): pp. 119–27.CrossRefGoogle Scholar
  29. 29.
    Volokhov, D., et al., Microarray analysis of erythromycin resistance determinants. J Appl Microbiol, 2003. 95(4): pp. 787–98.CrossRefGoogle Scholar
  30. 30.
    Call, D.R., et al., Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother, 2003. 47(10): pp. 3290–5.CrossRefGoogle Scholar
  31. 31.
    Wade, M.M., et al., Accurate mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a scanning-frame oligonucleotide microarray. Diagn Microbiol Infect Dis, 2004. 49(2): pp. 89–97.CrossRefGoogle Scholar
  32. 32.
    SantaLucia, J., Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA, 1998. 95(4): pp. 1460–5.CrossRefGoogle Scholar
  33. 33.
    Sugimoto, N., et al., Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res, 1996. 24(22): pp. 4501–5.CrossRefGoogle Scholar
  34. 34.
    Breslauer, K.J., et al., Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA, 1986. 83(11): pp. 3746–50.CrossRefGoogle Scholar
  35. 35.
    Google, Google Directory>Science>Biology>Bioinformatics>Software. 2008; Available from: http://www.google.com.
  36. 36.
    Herold, K.E. and A. Rasooly, Oligo Design: a computer program for development of probes for oligonucleotide microarrays. Biotechniques, 2003. 35(6): pp. 1216–21.Google Scholar
  37. 37.
    Smith, T.F. and M.S. Waterman, Identification of common molecular subsequences. J Mol Biol, 1981. 147(1): pp. 195–197.CrossRefGoogle Scholar
  38. 38.
    Lyon, Alignment software. 2008; Available from: http://pbil.univ-lyon1.fr/alignment.html.
  39. 39.
    Huang, X.Q. and W. Miller, A time-efficient, linear-space local similarity algorithm. Adv Appl Math, 1991. 12(3): pp. 337–357.CrossRefGoogle Scholar
  40. 40.
    Pearson, W., LAlign program, part of the FASTA program set. 2008; Available from: http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=lalign, http://www.ch.embnet.org/software/LALIGN_form.html.
  41. 41.
    Pearson, W.R. and D.J. Lipman, Improved tools for biological sequence comparison. Proc Natl Acad Sci USA, 1988. 85(8): pp. 2444–8.CrossRefGoogle Scholar
  42. 42.
    Altschul, S.F., et al., Issues in searching molecular sequence databases. Nat Genet, 1994. 6(2): pp. 119–29.CrossRefGoogle Scholar
  43. 43.
    Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): pp. 403–10.Google Scholar
  44. 44.
    Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21): pp. 2947–8.CrossRefGoogle Scholar
  45. 45.
    Clustal, Clustal download site. 2008; Available from: http://www.clustal.org/.
  46. 46.
    Google, Science>Biology>Biochemistry and Molecular Biology>Methods and Techniques>PCR>Software. 2008; Available from: http://www.google.com.
  47. 47.
    Bodrossy, L. and A. Sessitsch, Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol, 2004. 7(3): pp. 245–54.CrossRefGoogle Scholar
  48. 48.
    Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): pp. 467–70.CrossRefGoogle Scholar
  49. 49.
    Badiee, A., et al., Evaluation of five different cDNA labeling methods for microarrays using spike controls. BMC Biotechnol, 2003. 3(1): p. 23.CrossRefGoogle Scholar
  50. 50.
    Lyon, L.A., M.D. Musick, and M.J. Natan, Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem, 1998. 70(24): pp. 5177–83.CrossRefGoogle Scholar
  51. 51.
    Lian, W., et al., Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem, 2004. 334(1): pp. 135–44.CrossRefGoogle Scholar
  52. 52.
    Raychaudhuri, S., et al., Basic microarray analysis: grouping and feature reduction. Trends Biotechnol, 2001. 19(5): pp. 189–93.CrossRefGoogle Scholar
  53. 53.
    Jarvinen, A.K., et al., Are data from different gene expression microarray platforms comparable? Genomics, 2004. 83(6): pp. 1164–8.CrossRefGoogle Scholar
  54. 54.
    Yauk, C.L., et al., Comprehensive comparison of six microarray technologies. Nucleic Acids Res, 2004. 32(15): p. e124.CrossRefGoogle Scholar
  55. 55.
    Aguilar, Z.P., W.R. Vandaveer, and I. Fritsch, Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Anal Chem, 2002. 74(14): pp. 3321–9.CrossRefGoogle Scholar
  56. 56.
    Sergeev, N., et al., Microarray analysis of Bacillus cereus group virulence factors. J Microbiol Methods, 2005.Google Scholar
  57. 57.
    Sergeev, N., et al., Microarray analysis of Bacillus cereus group virulence factors. J Microbiol Methods, 2006. 65(3): pp. 488–502.CrossRefGoogle Scholar
  58. 58.
    AOAC International, Bacteriological analytical manual (BAM). 8th ed. (revision A). 1998, Gaithersburg, MD: AOAC International.Google Scholar
  59. 59.
    Sambrook, J. and D.W. Russell, Molecular cloning: a laboratory manual. 3rd ed. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
  60. 60.
    Chachaty, E. and P. Saulnier, Isolation chromosomal DNA from bacteria, in The nucleic acid protocols: handbook, R. Rapley, Editor. 2000, Totowa, NJ: Humana Press Inc. pp. 29–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dmitriy V. Volokhov
    • 1
  • Hyesuk Kong
    • 1
  • Keith Herold
    • 2
  • Vladimir E. Chizhikov
    • 1
  • Avraham Rasooly
    • 3
  1. 1.Center for Biologics Evaluation and ResearchFood and Drug AdministrationKensingtonUSA
  2. 2.Department of BioengineeringUniversity of MarylandCollege ParkUSA
  3. 3.National Institutes of Health, National Cancer InstituteFDABethesdaUSA

Personalised recommendations