Progress Report on Microstructured Surfaces Based on Chemical Vapor Deposition

  • Yaseen Elkasabi
  • Joerg Lahann
Part of the Methods in Molecular Biology book series (MIMB, volume 671)


This book chapter discusses recent advances in the fabrication of microscale surface patterns using chemical vapor deposition polymerization. Reactive poly(p-xylylene) (PPX) coatings are useful for their ability to immobilize specific biomolecules, as determined by the PPX functional group. PPXs can either be modified postdeposition, or they can be patterned onto a substrate in situ. Specific methods discussed in this progress report include microcontact printing, vapor-assisted micropatterning in replica structures, projection lithography-based patterning, and selective polymer deposition.

Key words

Bioarrays Chemical vapor deposition Immobilization Micropatterns Surface engineering 


  1. 1.
    A. Berg, W. Olthius, P. Bergveld, “Micro Total Analysis Systems” 2000, 1st edition, Kluwer, Dordrecht, The Netherlands, 2000.Google Scholar
  2. 2.
    P. Li, D. J. Harrison, “Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects” Anal. Chem. 1997, 69, 1564.CrossRefGoogle Scholar
  3. 3.
    H. Mao, T. Yang, P. S. Cremer, “Design and characterization of immobilized enzymes in microfluidic systems” Anal. Chem. 2002, 74, 379.CrossRefGoogle Scholar
  4. 4.
    S. H. Chen, W. C. Sung, G. B. Lee, Z. Y. Lin, P. W. Chen, P. C. Liao, “A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry” Electrophoresis 2001, 22, 3972.CrossRefGoogle Scholar
  5. 5.
    C. S. Effenhauser, J. M. Bruin, A. Paulus, M. Ehrat, “Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips” Anal. Chem. 1997, 69, 3451.CrossRefGoogle Scholar
  6. 6.
    J. Monahan, A. A. Gewirth, R. G. Nuzzo, “Indirect fluorescence detection of simple sugars via high-pH electrophoresis in poly(dimethylsiloxane) microfluidic chips” Electro­phoresis 2002, 23(14), 2347.CrossRefGoogle Scholar
  7. 7.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology” Chem. Rev. 2005, 105, 4, 1103–1169.CrossRefGoogle Scholar
  8. 8.
    D. Falconnet, G. Csucs, H. M. Grandin, M. Textor, “Surface engineering approaches to micropattern surfaces for cell-based assays” Biomaterials 2006, 27, 16, 3044–3063.CrossRefGoogle Scholar
  9. 9.
    D. S. Ginger, H. Zhang, C. A. Mirkin, “The evolution of Dip-Pen nanolithography” Angew. Chem. Int. Ed. 2004, 43, 30.CrossRefGoogle Scholar
  10. 10.
    S. Kramer, R. R. Fuierer, C. B. Gorman, “Scanning probe lithography using self-assembled monolayers” Chem. Rev. 2003, 103, 4367.CrossRefGoogle Scholar
  11. 11.
    S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers” App. Phys. Lett. 1995, 67, 3114.CrossRefGoogle Scholar
  12. 12.
    S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution” Science 1996, 272, 85.CrossRefGoogle Scholar
  13. 13.
    Y. N. Xia, G. M. Whitesides, “Soft lithography” Ann. Rev. Mater. Sci. 1998, 28, 153.CrossRefGoogle Scholar
  14. 14.
    A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching” App. Phys. Lett. 1993, 63, 2002.Google Scholar
  15. 15.
    J. L. Wilbur, A. Kumar, E. Kim, G. M. Whitesides, “Microfabrication by microcontact printing of self-assembled monolayers” Adv. Mater. 1994, 6, 600.CrossRefGoogle Scholar
  16. 16.
    Y. N. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters” Science 1996, 273, 347.CrossRefGoogle Scholar
  17. 17.
    X. M. Zhao, Y. N. Xia, G. M. Whitesides, “Fabrication of three-dimensional micro-structures: Microtransfer molding” Adv. Mater. 1996, 8, 837.CrossRefGoogle Scholar
  18. 18.
    E. Kim, Y. N. Xia, G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries” Nature 1995, 376, 581.CrossRefGoogle Scholar
  19. 19.
    E. Kim, Y. N. Xia, X. M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers” Adv. Mater. 1997, 9, 651.CrossRefGoogle Scholar
  20. 20.
    K. Y. Suh, Y. S. Kim, H. H. Lee, “Capillary force lithography” Adv. Mater. 2001, 13, 1386.CrossRefGoogle Scholar
  21. 21.
    W. T. Tsang, A. Y. Cho, “Molecular beam epitaxial writing of patterned GaAs epilayer structures” App. Phys. Lett. 1978, 32, 491.CrossRefGoogle Scholar
  22. 22.
    T. Schallenberg, T. Borzenko, G. Schmidt, M. Obert, G. Bacher, C. Schumacher, G. Karczewski, L. W. Molenkamp, S. Rodt, R. Heitz, D. Bimberg, “Controlled self-assembly of semiconductor quantum dots using shadow masks” App. Phys. Lett. 2003, 82, 4349.CrossRefGoogle Scholar
  23. 23.
    S. De Vusser, S. Steudel, K. Myny, J. Genoe, P. Heremans, “Integrated shadow mask method for patterning small molecule organic semiconductors” App. Phys. Lett. 2006, 88, 103501.CrossRefGoogle Scholar
  24. 24.
    D. C. Duffy, R. J. Jackman, K. M. Vaeth, K. F. Jensen, G. M. Whitesides, “Electroluminescent materials with feature sizes as small as 5 μm using elastomeric membranes as masks for dry lift-off” Adv. Mater. 1999, 11, 546.CrossRefGoogle Scholar
  25. 25.
    N. Takano, L. M. Doeswijk, M. A. F. van den Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems” J. Micromech. Microeng. 2006, 16, 1606.CrossRefGoogle Scholar
  26. 26.
    B. R. Ringeisen, J. Callahan, P. K. Wu, A. Pique, B. Spargo, R. A. McGill, M. Bucaro, H. Kim, D. M. Bubb, D. B. Chrisey, “Novel laser-based deposition of active protein thin films” Langmuir 2001, 17, 3472.CrossRefGoogle Scholar
  27. 27.
    E. Ostuni, R. Kane, C. S. Chen, D. E. Ingber, G. M. Whitesides, “Patterning mammalian cells using elastomeric membranes” Langmuir 2000, 16, 7811.CrossRefGoogle Scholar
  28. 28.
    R. Pal, K. E. Sung, M. A. Burns, “Microstencils for the patterning of nontraditional materials” Langmuir 2006, 22, 5392.CrossRefGoogle Scholar
  29. 29.
    D. G. Castner, B. D. Ratner, “Biomedical surface science: foundations to frontiers” Surf. Sci. 2002, 500, 28.CrossRefGoogle Scholar
  30. 30.
    P. Rai-Choudhury, “Handbook of Micro-lithography, Micromachining, and Microfabri-cation. Volume 1: Microlithography”, SPIE-The International Society for Optical Engineering, 1997.Google Scholar
  31. 31.
    F. Cerrina, “X-ray imaging: applications to patterning and lithography” J. Phys. D Appl. Phys. 2000, 33, R103.CrossRefGoogle Scholar
  32. 32.
    N. Yao, Z. L. Wang, Handbook of Microscopy for Nanotechnology, Springer, Berlin, 2005.CrossRefGoogle Scholar
  33. 33.
    A. A. Tseng, “Recent developments in nanofabrication using ion projection lithography” Small 2005, 1, 594.CrossRefGoogle Scholar
  34. 34.
    D. Meschede, H. Metcalf, “Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces” J. Phys. D Appl. Phys. 2003, 36, R17.CrossRefGoogle Scholar
  35. 35.
    E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, H. Biebuyck, “Microfluidic networks for chemical patterning of substrates: design and application to bioassays” J. Am. Chem. Soc. 1998, 120, 500–508.CrossRefGoogle Scholar
  36. 36.
    S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, G. M. Whitesides, “Patterning cells and their environments using multiple laminar fluid flows in capillary networks” Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5545–5548.CrossRefGoogle Scholar
  37. 37.
    B. Regenberg, U. Kruehne, M. Beyer, L.H. Pedersen, M. Simon, O.R.T. Thomas, J. Nielsen, T. Ahl, “Use of laminar flow patterning for miniaturised biochemical assays” Lab. Chip. 2004, 4, 654–657.CrossRefGoogle Scholar
  38. 38.
    S. Takayama, E. Ostuni, P. LeDuc., K. Naruse, D. E. Ingber., G. M. Whitesides “Laminar flows: subcellular positioning of small molecules” Nature 2001, 411, 1016.CrossRefGoogle Scholar
  39. 39.
    M. Schena, D. Shalon, R. W. Davis, P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray” Science 1995, 270, 467–470.CrossRefGoogle Scholar
  40. 40.
    R.A. Heller, M. Schena, A. Chai, D. Shalon, T. Bedilion, J. Gilmore, D.E. Woolley, R.W. Davis, “Discovery and analysis of inflammatory disease-related genes using cDNA microarrays” Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2150–2155.CrossRefGoogle Scholar
  41. 41.
    D. Shalon, S. J. Smith, P. O. Brown, “A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization” Genome Res. 1996, 6, 639–645.CrossRefGoogle Scholar
  42. 42.
    M.F. Lopez, M.G. Pluskal, “Protein micro- and macroarrays: digitizing the proteome” J. Chromatogr., B 2003, 787, 19–27.CrossRefGoogle Scholar
  43. 43.
    A. Roda, M. Guardigli, C. Russo, P. Pasini, M. Baraldini, “Protein microdeposition using a conventional ink-jet printer” Biotechniques 2000, 28, 492–496.Google Scholar
  44. 44.
    A. Khademhosseini, K. Y. Suh, S. Jon, G. Eng, J. Yeh, G. J. Chen, R. Langer, “A soft lithographic approach to fabricate patterned microfluidic channels” Anal. Chem. 2004, 76, 3675–3681.CrossRefGoogle Scholar
  45. 45.
    W. Zhan, G. H. Seong, R. M. Crooks, “Hydrogel-based microreactors as a functional component of microfluidic systems” Anal. Chem. 2002, 74, 4647–4652.CrossRefGoogle Scholar
  46. 46.
    D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels” Nature 2000, 404, 588–590.CrossRefGoogle Scholar
  47. 47.
    J. Heo, K. J. Thomas, G. H. Seong, R. M. Crooks, “A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions” Anal. Chem. 2003, 75, 22–26.CrossRefGoogle Scholar
  48. 48.
    M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, G. M. Whitesides, “Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver” Exp. Cell Res. 1997, 235, 305–313.CrossRefGoogle Scholar
  49. 49.
    S.W. Rhee, A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, N. L. Jeon, “Patterned cell culture inside microfluidic devices” Lab. Chip 2005, 5, 102–107.CrossRefGoogle Scholar
  50. 50.
    S.D. Senturia. “Microsystem Design”, Kluwer, Norwell, 2000.Google Scholar
  51. 51.
    Y.C. Chang, C.W. Frank, “Vapor deposition-polymerization of -amino acid N-carboxy anhydride on the silicon(100) native oxide surface” Langmuir 1998, 14, 326.CrossRefGoogle Scholar
  52. 52.
    N. H. Lee, C. W. Frank, “Surface-initiated vapor polymerization of various -amino acids” Langmuir 2003, 19, 1295.CrossRefGoogle Scholar
  53. 53.
    Y. Mao, K. K. Gleason, “Hot filament chemical vapor deposition of poly(glycidyl methacrylate) thin films using tert-butyl peroxide as an initiator” Langmuir 2004, 20, 2484.CrossRefGoogle Scholar
  54. 54.
    T. P. Martin, K. K. Gleason, “Combinatorial initiated CVD for polymeric thin films” Chem. Vap. Dep. 2006, 12, 685.CrossRefGoogle Scholar
  55. 55.
    W.F. Gorham, “A new, general synthetic method for the preparation of Linear poly-p-xylylenes” J. Polym. Sci., Part A-1 1966, 4, 3027.CrossRefGoogle Scholar
  56. 56.
    J. Lahann, D. Klee, H. Hocker, “Chemical vapour deposition polymerization of substituted [2.2]paracyclophanes” Macromol. Rapid Commun. 1998, 19, 441.CrossRefGoogle Scholar
  57. 57.
    J. Lahann, M. Balcells, T. Rodon, J. Lee, I.S. Choi, K.F. Jensen, R. Langer, “Reactive polymer coatings: a platform for patterning proteins and mammalian cells onto a broad range of materials” Langmuir 2002, 18, 3632.CrossRefGoogle Scholar
  58. 58.
    J. Lahann, R. Langer, “Novel poly(p-xylylenes): thin films with tailored chemical and optical properties” Macromolecules 2002, 35, 4380.Google Scholar
  59. 59.
    J. Lahann, “Vapor-based polymer coatings for potential biomedical applications” Polym. Inter. 2006, 55, 1361.CrossRefGoogle Scholar
  60. 60.
    Y. Elkasabi, M. Yoshida, H. Nandivada, H. Y. Chen, J. Lahann, “Towards multipotent coatings: chemical vapor deposition and biofunctionalization of carbonyl-substituted copolymers” Macromol. Rapid Comm. 2008, 29, 855–870.CrossRefGoogle Scholar
  61. 61.
    M. Morgen, S. H. Rhee, J. H. Zhao, I. Malik, T. Ryan, H. M. Ho, M. A. Plano, P. Ho, “Comparison of crystalline phase transitions in fluorniated vs nonfluorinated parylene thin films” Macromolecules 1999, 32, 7555.CrossRefGoogle Scholar
  62. 62.
    J. J. Senkevich, S. B. Desu, V. Simkovic, “Temperature studies of optical birefringence and X-ray diffraction with poly(p-xylylene), poly(chloro-p-xylylene) and poly(tetrafluoro-p-xylylene) CVD thin films” Polymer 2000, 41, 2379.CrossRefGoogle Scholar
  63. 63.
    S. Y. Park, S. N. Chvalun, A. A. Nikolaev, K. A. Mailyan, A. V. Pebalk, I. E. Kardash, “The structure of poly(cyano-p-xylylene)” Polymer 2000, 41, 2937.CrossRefGoogle Scholar
  64. 64.
    D. Klee, N. Weiss, J. Lahann, “Vapor-based polymerization of functionalized [2.2]paracyclophanes: a unique approach towards surface-engineered microenvironments”  Chapter 18, Modern Cyclophane Chemistry, Wiley-VCH, Weinheim, 2004, p463.Google Scholar
  65. 65.
    H. Nandivada, H. Y. Chen, J. Lahann, “Vapor-based synthesis of poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications” Macromol. Rapid Comm. 2005, 26, 1794.CrossRefGoogle Scholar
  66. 66.
    G. T. Hermanson, “Bioconjugate Techniques”, 1st edition, Academic, San Diego, CA, 1996.Google Scholar
  67. 67.
    D. N. Moothoo, J. H. Naismith, “A general method for co-crystallization of concanavalin A with carbohydrates” Acta Crystallogr. D Biol. Crystallogr. 1999, D55, 1, 353.CrossRefGoogle Scholar
  68. 68.
    S. Thenevet, H.Y. Chen, J. Lahann, F. Stellacci, “A generic approach towards nanostructured surfaces based on supramolecular nanostamping on reactive polymer coatings” Adv. Mater. 2007, 19, 4333.CrossRefGoogle Scholar
  69. 69.
    H. Nandivada, H. Y. Chen, L. Bondarenko, J. Lahann, “Reactive polymer coatings that ‘click’ ” Angew. Chem. Int. Ed. 2006, 45, 3360.CrossRefGoogle Scholar
  70. 70.
    V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, “A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes” Angew. Chem. 2002, 114, 2708–2711; Angew. Chem. Int. Ed. 2002, 41, 2596–2599.Google Scholar
  71. 71.
    H.Y. Chen, Y. Elkasabi, J. Lahann, “Surface modification of confined microgeometries via vapor-deposited polymer coatings” J. Am. Chem. Soc. 2006, 128, 374.CrossRefGoogle Scholar
  72. 72.
    J. C. McDonald, G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices” Acc. Chem. Res. 2002, 35, 491–499.CrossRefGoogle Scholar
  73. 73.
    H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu, “Using Soft lithography to pattern highly oriented polyacetylene (HOPA) films via solventless polymerization” Adv. Mater. 2004, 16, 1356.CrossRefGoogle Scholar
  74. 74.
    M. Graff, S. K. Mohanty, E. Moss, A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials” J. Microelectromech. Syst. 2004, 13, 956.CrossRefGoogle Scholar
  75. 75.
    H.Y. Chen, J. Lahann, “Vapor-assisted micropatterning in replica structures: a solventless approach towards topologically and chemically designable surfaces” Adv. Mater. 2007, 19, 3801.CrossRefGoogle Scholar
  76. 76.
    X. Jiang, H. Y. Chen, G. Galvan, M. Yoshida, J. Lahann, “Vapor-based initiator coatings for atom transfer radical polymerization” Adv. Funct. Mater. 2008, 18, 27.CrossRefGoogle Scholar
  77. 77.
    E. M. Tolstopyatov, “Thickness uniformity of gas-phase coatings in narrow channels: I. Long channels” J. Phys. D Appl. Phys. 2002, 35, 1516.CrossRefGoogle Scholar
  78. 78.
    E. M. Tolstopyatov, S. H. Yang, M. C. Kim, “Thickness uniformity of gas-phase coatings in narrow channels: II. One-side confined channels” J. Phys. D Appl. Phys. 2002, 35, 2723.CrossRefGoogle Scholar
  79. 79.
    H. Y. Chen, J. M. Rouillard, E. Gulari, J. Lahann, “Colloids with high-definition surface structures” Proc. Nat. Acad. Sci. 2007, 104, 11173.CrossRefGoogle Scholar
  80. 80.
    H. Y. Chen, J. M. Rouillard, E. Gulari, J. Lahann, “High-precision surface modification of three-dimensional geometries using photodefinable ultra-thin polymer coatings” PMSE Preprints 2006, 95, 125.Google Scholar
  81. 81.
    W. W. Shen, S.G. Boxer, W. Knoll, C.W. Frank, “Polymer-supported lipid bilayers on benzophenone-modified substrates” Biomac­ro­molecules 2001, 2, 70–79.CrossRefGoogle Scholar
  82. 82.
    K. Y. Suh, R. Langer, J. Lahann, “A novel photodefinable reactive polymer coating and its use for microfabrication of hydrogel elements” Adv. Mater. 2004, 16, 1401.CrossRefGoogle Scholar
  83. 83.
    H. Y. Chen, J. Lahann, “Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings” Anal. Chem. 2005, 77, 6909.CrossRefGoogle Scholar
  84. 84.
    J. Tian, H Gong, N. Sheng, X. Zhou, E. Gulari, X. Gao, G. Church, “Accurate multiplex gene synthesis from programmable DNA microchips” Nature 2004, 432, 1050.CrossRefGoogle Scholar
  85. 85.
    J. P. Pellois, X. Zhou, O. Srivannavit, T. Zhou, E. Gulari, X. Gao, “Individually addressable parallel peptide synthesis on microchips” Nat. Biotech. 2002, 20, 922.CrossRefGoogle Scholar
  86. 86.
    X. L. Gao, X. C. Zhou, E. Gulari, “Light directed massively parallel on-chip synthesis of peptide arrays with t-Boc chemistry” Proteomics 2003, 3, 2135.CrossRefGoogle Scholar
  87. 87.
    X. Gao, E. LeProust, H. Zhang, O. Srivannavit, E. Gulari, P. Yu, C. Nishiguchi, Q. Xiang, X. Zhou, “A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids” Nucl. Acids Res. 2001, 29, 4744–4750.CrossRefGoogle Scholar
  88. 88.
    K. S. Taton, P. E. Guire, “Photoreactive self-assembling polyethers for biomedical coatings” Colloids Surf. B 2002, 24, 123–132.CrossRefGoogle Scholar
  89. 89.
    K. M. Vaeth, K. F. Jensen, “Selective growth of Poly(p-phenylene vinylene) prepared by chemical vapor deposition” Adv. Mater. 1999, 11, 814.CrossRefGoogle Scholar
  90. 90.
    K. M. Vaeth, K. F. Jensen, “Transition metals for selective chemical vapor deposition of parylene-based polymers” Chem. Mater. 2000, 12, 1305.CrossRefGoogle Scholar
  91. 91.
    K. Y. Suh, R. Langer, J. Lahann, “Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly(p-xylylene)” App. Phys. Lett. 2003, 83, 4250.CrossRefGoogle Scholar
  92. 92.
    H. Y. Chen, J. H. Lai, X. Jiang, J. Lahann, “Substrate-selective chemical vapor deposition of reactive polymer coatings” Adv. Mater. 2008, 20, 3474.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yaseen Elkasabi
    • 1
  • Joerg Lahann
    • 2
  1. 1.Material Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.University of MichiganAnn ArborUSA

Personalised recommendations