PDMS Microfluidic Capillary Systems for Patterning Proteins on Surfaces and Performing Miniaturized Immunoassays

  • Mateu Pla-Roca
  • David Juncker
Part of the Methods in Molecular Biology book series (MIMB, volume 671)


In this chapter, we describe the fabrication and use of microfluidic capillary systems (CSs) made in soft, transparent polydimethylsiloxane (PDMS). Sixteen microfluidic CSs, each containing a loading pad, a microchannel, and a capillary pump are engraved in a single PDMS chip. The CSs are used for two applications, firstly to pattern fibronectin on glass surfaces to locally control the adhesion of cultured cells to the substrate, and secondly to carry out multiplexed miniaturized immunoassays.

Key words

Microfluidics Miniaturizated immunoassays Micromosaic immunoassays Protein patterning 



The authors would like to thank Emmanuel Delamarche and Ute Drechsler (IBM Research Center, Zurich) for the fabrication of the molds. We are also very grateful to Saravanan Sundararajan and Haig Djambazian (Genome Quebec, McGill University, Montreal) for providing the myoblast cells and the DIC microscopy imaging of the cells. M. P. acknowledges financial support of the Spanish Ministry of Science postdoctoral fellows.


  1. 1.
    Lang, S., von Philipsborn A. C., Bernard, A., Bonhoeffer, F., Bastmeyer, M. (2008) Growth cone response to ephrin gradients produced by microfluidic networks. Anal. Bioanal. Chem. 390, 3, 809–816.CrossRefGoogle Scholar
  2. 2.
    Jiang, X., Xu Q., Dertinger, S. K. W., Stroock A. D., Fu, T., Whitesides G. M. A. (2005) General method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal. Chem. 77, 2338–2347.CrossRefGoogle Scholar
  3. 3.
    Delamarche, E., Bernard, A. (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781.CrossRefGoogle Scholar
  4. 4.
    Juncker, D., Schmid H., Drechsler, U, Wolf, H., Wolf, M., Michel, B., Nico de Rooij, Delamarche, E. (2002) Autonomous microfluidic capillary system. Anal. Chem. 74, 6139–6144.CrossRefGoogle Scholar
  5. 5.
    Delamarche, E., Juncker, D., Schmid, H. (2005) Microfluidics for processing surfaces and miniaturizing biological assays. Adv. Mater. 17, 2911–2933.CrossRefGoogle Scholar
  6. 6.
    Bernard, A., Michel, B., Delamarche, E. (2001) Micromosaic immunoassays. Anal. Chem. 73, 8–12.CrossRefGoogle Scholar
  7. 7.
    Benn J. A., Hu, J., Hogan B. J., Fry R. C., Samson L. D., Thorsen T. (2006) Comparative modeling and analysis of microfluidic and conventional DNA microarrays. Anal. Biochem. 348, 284–293.CrossRefGoogle Scholar
  8. 8.
    Wolf, M., Juncker, D., Michel, B., Hunziker, P., Delamarche, E. (2004) Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens. Bioelectron. 19, 1193–1202.CrossRefGoogle Scholar
  9. 9.
    Rowe, C. A., Tender, L. M., Feldstein, M. J., et al. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem. 71, 3846–3852.CrossRefGoogle Scholar
  10. 10.
    Murphy, B. M., He, X., Dandy, D., Henry, C. S. (2008) Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. Anal. Chem. 80, 444–450.CrossRefGoogle Scholar
  11. 11.
    Nam, Y., Branch, D. W., Wheeler, B. C. (2006) Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures. Biosens. Bioelectron. 22, 589–597.CrossRefGoogle Scholar
  12. 12.
    Younan, X., Whitesides, G. M. (1998) Soft lithography. Angew. Chem. Int. Ed. 37, 550–575.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Tan, J. L., Liu, W., Nelson, C. M., Raghavan, S., Chen, C. S. (2004) Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10, 865–872.CrossRefGoogle Scholar
  15. 15.
    Cesaro-Tadic, S., Dernick, G., Juncker, D., etal. (2004) High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems. Lab on a Chip. 4, 563–569.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mateu Pla-Roca
    • 1
  • David Juncker
    • 1
  1. 1.Bio-Medical Engineering DepartmentMcGill UniversityMontrealCanada

Personalised recommendations