Detection of GFP During Nervous System Development in Drosophila melanogaster

  • Karin Edoff
  • James S. Dods
  • Andrea H. Brand
Part of the Methods in Molecular Biology book series (MIMB, volume 411)


Using the vital marker GFP and its spectral variants, it is possible to visualize multiple proteins in individual cells and thereby monitor embryonic development on a cellular and molecular level. In the following chapter we describe how to prepare Drosophila embryos or larvae for live imaging or immunohistochemical staining and provide some guidelines for optimal GFP detection.

Key Words

Green fluorescent protein fluorescent proteins nervous system development confocal microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 59, 223–239.CrossRefGoogle Scholar
  2. 2.
    Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.PubMedCrossRefGoogle Scholar
  3. 3.
    Yuste, R. (2005) Fluorescence microscopy today. Nat. Methods 2, 902–904.PubMedCrossRefGoogle Scholar
  4. 4.
    Ando, R., Mizuno, H., and Miyawaki, A. (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373.PubMedCrossRefGoogle Scholar
  5. 5.
    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12,651–12,656.CrossRefGoogle Scholar
  6. 6.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyawaki, A. (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189–199.PubMedCrossRefGoogle Scholar
  8. 8.
    Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.PubMedCrossRefGoogle Scholar
  9. 9.
    Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., et al. (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465.PubMedCrossRefGoogle Scholar
  10. 10.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.PubMedCrossRefGoogle Scholar
  11. 11.
    Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  12. 12.
    Brand, A. H. and Dormand, E. L. (1995) The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr. Opin. Neurobiol. 5, 572–578.PubMedCrossRefGoogle Scholar
  13. 13.
    Brand, A. H., Manoukian, A. S., and Perrimon, N. (1994) Ectopic expression in Drosophila, in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology, Academic Press, San Diego, pp. 635–652.Google Scholar
  14. 14.
    Phelps, C. B. and Brand, A. H. (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14, 367–379.PubMedCrossRefGoogle Scholar
  15. 15.
    Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.CrossRefGoogle Scholar
  16. 16.
    Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.PubMedCrossRefGoogle Scholar
  17. 17.
    Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663–664.PubMedCrossRefGoogle Scholar
  18. 18.
    Zernicka-Goetz, M., Pines, J., Ryan, K., et al. (1996) An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122, 3719–3724.PubMedGoogle Scholar
  19. 19.
    Siemering, K. R., Golbik, R., Sever, R., and Haseloff, J. (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6, 1653–1663.PubMedCrossRefGoogle Scholar
  20. 20.
    Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., et al. (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850.PubMedCrossRefGoogle Scholar
  21. 21.
    Chudakov, D. M., Lukyanov, S., and Lukyanov, K. A. (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613.PubMedCrossRefGoogle Scholar
  22. 22.
    Conchello, J. A. and Lichtman, J. W. (2005) Optical sectioning microscopy. Nat. Methods 2, 920–931.PubMedCrossRefGoogle Scholar
  23. 23.
    Haseloff, J., Dormand, E. L., and Brand, A. H. (1999) Live imaging with green fluorescent protein. Methods Mol. Biol. 122, 241–259.PubMedGoogle Scholar
  24. 24.
    Billinton, N. and Knight, A. W. (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291, 175–197.PubMedCrossRefGoogle Scholar
  25. 25.
    Hacker, U. and Perrimon, N. (1998) DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284.PubMedGoogle Scholar
  26. 26.
    Van Doren, M., Williamson, A. L., and Lehmann, R. (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246.PubMedCrossRefGoogle Scholar
  27. 27.
    Greig, S. and Akam, M. (1993) Homeotic genes autonomously specify one aspect of pattern in the Drosophila mesoderm. Nature 362, 630–632.PubMedCrossRefGoogle Scholar
  28. 28.
    Green, R. B., Hatini, V., Johansen, K. A., Liu, X. J., and Lengyel, J. A. (2002) Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of the Drosophila hindgut. Development 129, 3645–3656.PubMedGoogle Scholar
  29. 29.
    Fietz, M. J., Jacinto, A., Taylor, A. M., Alexandre, C., and Ingham, P. W. (1995) Secretion of the amino-terminal fragment of the hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Curr. Biol. 5, 643–650.PubMedCrossRefGoogle Scholar
  30. 30.
    Payre, F., Vincent, A., and Carreno, S. (1999) ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanson, B., Alexandre, C., Fascetti, N., and Vincent, J. P. (1999) Engrailed and hedgehog make the range of Wingless asymmetric in Drosophila embryos. Cell 98, 207–216.PubMedCrossRefGoogle Scholar
  32. 32.
    Klaes, A., Menne, T., Stollewerk, A., Scholz, H., and Klambt, C. (1994) The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell 78, 149–160.PubMedCrossRefGoogle Scholar
  33. 33.
    Albertson, R., Chabu, C., Sheehan, A., and Doe, C. Q. (2004) Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. J. Cell Sci. 117, 6061–6070.PubMedCrossRefGoogle Scholar
  34. 34.
    zurLage, P. and Jarman, A. P. (1999) Antagonism of EGFR and notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors. Development 126, 3149–3157.PubMedGoogle Scholar
  35. 35.
    Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H., and Schweisguth, F. (2001) Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat. Cell Biol. 3, 50–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Lin, D. M. and Goodman, C. S. (1994) Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523.PubMedCrossRefGoogle Scholar
  37. 37.
    Sun, B., Xu, P., and Salvaterra, P. M. (1999) Dynamic visualization of nervous system in live Drosophila. Proc. Natl. Acad. Sci. USA 96, 10,438–10,443.Google Scholar
  38. 38.
    Yeh, E., Gustafson, K., and Boulianne, G. L. (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 92, 7036–7040.PubMedCrossRefGoogle Scholar
  39. 39.
    Salvaterra, P. M. and Kitamoto, T. (2001) Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain Res. Gene Expr. Patterns 1, 73–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Friggi-Grelin, F., Iche, M., and Birman, S. (2003) Tissue-specific developmental requirements of Drosophila tyrosine hydroxylase isoforms. Genesis 35, 175–184.PubMedCrossRefGoogle Scholar
  41. 41.
    Li, H., Chaney, S., Roberts, I. J., Forte, M., and Hirsh, J. (2000) Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211–214.PubMedCrossRefGoogle Scholar
  42. 42.
    Ito, K., Urban, J., and Technau, G. M. (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Rouxs Arch. Dev. Biol. 204, 284–307.CrossRefGoogle Scholar
  43. 43.
    Hewes, R. S., Schaefer, A. M., and Taghert, P. H. (2000) The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics 155, 1711–1723.PubMedGoogle Scholar
  44. 44.
    Golembo, M., Raz, E., and Shilo, B. Z. (1996) The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122, 3363–3370.PubMedGoogle Scholar
  45. 45.
    Sepp, K. J., Schulte, J., and Auld, V. J. (2001) Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev. Biol. 238, 47–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Booth, G. E., Kinrade, E. F., and Hidalgo, A. (2000) Glia maintain follower neuron survival during Drosophila CNS development. Development 127, 237–244.PubMedGoogle Scholar
  47. 47.
    Morin, X., Daneman, R., Zavortink, M., and Chia, W. (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15,050–15,055.CrossRefGoogle Scholar
  48. 48.
    Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.PubMedCrossRefGoogle Scholar
  49. 49.
    Akiyama-Oda, Y., Hotta, Y., Tsukita, S., and Oda, H. (2000) Mechanism of glianeuron cell-fate switch in the Drosophila thoracic neuroblast 6-4 lineage. Development 127, 3513–3522.PubMedGoogle Scholar
  50. 50.
    Benton, R., and St Johnston, D. (2003) A conserved oligomerization domain in Drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity. Curr. Biol. 13, 1330–1334.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu, B., Ackerman, L., Jan, L. Y., and Jan, Y. N. (1999) Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891.PubMedCrossRefGoogle Scholar
  52. 52.
    Ohshiro, T., Yagami, T., Zhang, C., and Matsuzaki, F. (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596.PubMedCrossRefGoogle Scholar
  53. 53.
    Oda, H. and Tsukita, S. (2001) Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci. 114, 493–501.PubMedGoogle Scholar
  54. 54.
    Kaltschmidt, J. A., Davidson, C. M., Brown, N. H., and Brand, A. H. (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat. Cell Biol. 2, 7–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Roper, K., Mao, Y., and Brown, N. H. (2005) Contribution of sequence variation in Drosophila actins to their incorporation into actin-based structures in vivo. J. Cell Sci. 118, 3937–3948.PubMedCrossRefGoogle Scholar
  56. 56.
    Sisson, J. C., Field, C., Ventura, R., Royou, A., and Sullivan, W. (2000) Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J. Cell Biol. 151, 905–918.PubMedCrossRefGoogle Scholar
  57. 57.
    Gergely, F., Karlsson, C., Still, I., Cowell, J., Kilmartin, J., and Raff, J. W. (2000) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA 97, 14,352–14,357.Google Scholar
  58. 58.
    Langevin, J., Le Borgne, R., Rosenfeld, F., Gho, M., Schweisguth, F., and Bellaiche, Y. (2005) Lethal giant larvae controls the localization of notch-signaling regulators numb, neuralized, and Sanpodo in Drosophila sensory-organ precursor cells. Curr. Biol. 15, 955–962.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang, Y. Q., Rodesch, C. K., and Broadie, K. (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142–145.PubMedCrossRefGoogle Scholar
  60. 60.
    Koh, Y. H., Popova, E., Thomas, U., Griffith, L. C., and Budnik, V. (1999) Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98, 353–363.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Karin Edoff
    • 1
    • 2
  • James S. Dods
    • 1
    • 2
  • Andrea H. Brand
    • 1
    • 2
  1. 1.Wellcome Trust/Cancer Research UK Gurdon InstituteUK
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeUK

Personalised recommendations