The Micronucleus Assay Determination of Chromosomal Level DNA Damage

  • Michael Fenech
Part of the Methods in Molecular Biology book series (MIMB, volume 410)


The study of DNA damage at the chromosome level is an essential part of genetic toxicology because chromosomal mutation is an important event in carcinogenesis. Micronucleus assays have emerged as one of the preferred methods for assessing chromosome damage because they enable both chromosome loss and chromosome breakage to be measured reliably. Because micronuclei can only be expressed in cells that complete nuclear division a special method was developed that identifies such cells by their binucleate appearance when blocked from performing cytokinesis by cytochalasin-B, a microfilament-assembly inhibitor. The cytokinesis-block micronucleus (CBMN) assay allows better precision because the data obtained are not confounded by altered cell division kinetics caused by cytotoxicity of agents tested or suboptimal cell culture conditions. The method is now applied to various cell types for population monitoring of genetic damage, screening of chemicals for genotoxic potential and for specific purposes such as the prediction of the radiosensitivity of tumors and the inter-individual variation in radiosensitivity. In its current basic form the CBMN assay can provide, using simple morphological criteria, the following measures of genotoxicity and cytotoxicity: chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic bridges), gene amplification (nuclear buds), cell division inhibition, necrosis and apoptosis. The cytosine arabinoside modification of the CBMN assay allows for measurement of excision repairable lesions. The use of molecular probes enables chromosome loss to be distinguished from chromosome breakage and importantly nondisjunction in nonmicronucleated binucleated cells can be efficiently measured. The CBMN technique therefore provides multiple and complementary measures of genotoxicity and cytotoxicity which can be achieved with relative ease within one system. The basic principles and methods (including detailed scoring criteria for all the genotoxicity and cytotoxicity end points) of the CBMN assay are described and areas for future development identified.


Chromosome breakage chromosome loss cytokinesis-block micronu-clei micronucleus nucleoplasmic bridges 


  1. 1.
    Evans, H. J. (1977) Molecular mechanisms in the induction of chromosome aberrations, in: Progress in Genetic Toxicology (Scott, D., Bridges, B. A., and Sobels, F. H., eds.), Elsevier North Holland Biomedical Press, Amsterdam, pp.57–74.Google Scholar
  2. 2.
    Savage, J. R. K. (1993) Update on target theory as applied to chromosomal aberrations. Environ. Mol. Mutagen.22, 198–207.CrossRefPubMedGoogle Scholar
  3. 3.
    Evans, H. J. (1990) Cytogenetics: overview. Prog. Clin Biol. Res. 340B, 301–323.PubMedGoogle Scholar
  4. 4.
    Dellarco, V. L., Mavournin, K. H., and Tice, R. R. (1985) Aneuploidy and health risk assessment: current status and future directions. Environ. Mutagen. 7, 405–424.CrossRefPubMedGoogle Scholar
  5. 5.
    Guttenbach, M., and Schmid, M. (1994) Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures. Exp. Cell Res. 211, 127–132.CrossRefPubMedGoogle Scholar
  6. 6.
    Natarajan, A. T., and Obe, G. (1982) Mutagenicity testing with cultured mammalian cells: cytogenetic assays, in Mutagenicity: New Horizons in Genetic Toxicology (Heddle J. A. ed.), Academic Press, New York, pp.17–213.Google Scholar
  7. 7.
    Schmid, W. (1975) The micronucleus test. Mutat. Res. 31, 9–15.PubMedGoogle Scholar
  8. 8.
    Heddle, J. A. (1973) A rapid in vivo test for chromosome damage. Mutat. Res. 18, 187–192.PubMedGoogle Scholar
  9. 9.
    Fenech, M., and Morley, A. A. (1985) Solutions to the kinetic problem in the micronucleus assay. Cytobios 43, 233–246.PubMedGoogle Scholar
  10. 10.
    Fenech, M., and Morley, A. A. (1985) Measurement of micronuclei in lymphocytes. Mutat. Res. 147, 29–36.PubMedGoogle Scholar
  11. 11.
    Fenech, M., and Morley, A. A. (1986) Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low-dose x-irradiation. Mutat. Res. 161, 193–198.PubMedGoogle Scholar
  12. 12.
    Carter, S. B. (1967) Effects of cytochalasins on mammalian cells. Nature 213, 261–264.CrossRefPubMedGoogle Scholar
  13. 13.
    Masunaga, S., Ono, K., and Abe, M. (1991) A method for the selective measurement of the radiosensitivity of quiescent cells in solid tumours—combination of immunofluorescence staining to BrdU and micronucleus assay. Radiat. Res. 125,243–247.CrossRefPubMedGoogle Scholar
  14. 14.
    Odagiri, Y., Takemoto, K., and Fenech, M. (1994) Micronucleus induction in cytokinesis-blocked mouse bone-marrow cells in vitro following in vivo exposure to X-irradiation and cyclophosphamide. Environ. Mol. Mutagen. 24, 61–67.CrossRefPubMedGoogle Scholar
  15. 15.
    Degrassi, F., and Tanzarella, C. (1988) Immunofluorescent staining of kinetochores in micronuclei: a new assay for the detection of aneuploidy. Mutat. Res. 203, 339–345.PubMedGoogle Scholar
  16. 16.
    Thompson, E. J., and Perry, P. (1988) The identification of micronucleated chromosomes: a possible assay for aneuploidy. Mutagenesis 3, 415–418.CrossRefGoogle Scholar
  17. 17.
    Farooqi, Z., Darroudi, F., and Natarajan, A. T. (1993) Use of fluorescence in situ hybridisation for the detection of aneugens in cytokinesis-blocked mouse splenocytes. Mutagenesis 8, 329–334.CrossRefPubMedGoogle Scholar
  18. 18.
    Hando, J. C., Nath, J., and Tucker, J. D. (1994) Sex chromosomes, micronuclei and aging in women. Chromosoma 103, 186–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Parry, E. M., Henderson, L., and Mackay, J. M. (1995) Guidelines for testing of chemicals. Procedures for the detection of chemically induced aneuploidy: recommendations of a UK Environmental Mutagen Society working group. Mutagenesis 10, 1–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Elhajouji, A., Van Hummellen, P., and Kirsch-Volders, M. (1995) Indications for a threshold of chemically induced aneuploidy in vitro in human lymphocytes. Environ. Mol. Mutagen. 26, 292–304.CrossRefPubMedGoogle Scholar
  21. 21.
    Fenech, M., and Neville, S. (1992) Conversion of excision-repairable DNA lesions to micronuclei within one cell cycle in human lymphocytes. Environ. Mol. Mutagen. 19, 27–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Zijno, A., Marcon, F., Leopardi, P., and Crebelli, R. (1994) Simultaneous detection of X-chromosome loss and non-disjunction in cytokinesis-blocked human lymphocytes by in situ hybridisation with a centromeric DNA probe; implications for the human lymphocyte in vitro micronucleus assay using cytochalasin-B. Mutagenesis 9, 225–232.CrossRefPubMedGoogle Scholar
  23. 23.
    Elhajouji, A., Tibaldi, F., and Kirsch-Volders, M. (1997) Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes. Mutagenesis 12, 133–140.CrossRefPubMedGoogle Scholar
  24. 24.
    Schuler, M., Rupa, D. S., and Eastmond, D. A. (1997) A critical evaluation of centromeric labelling to distinguish micronuclei induced by chromosomal loss and breakage in vitro. Mutat. Res. 392, 81–95.PubMedGoogle Scholar
  25. 25.
    Kirsch-Volders, M., Elhajouji, A., Cundari, E., and Van Hummelen, P. (1997) The in vitro micronucleus test: a multi-end-point assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutat. Res. 392, 19–30.PubMedGoogle Scholar
  26. 26.
    Fenech, M., Crott, J., Turner, J., and Brown, S. (1999) Necrosis, apoptosis, cytostasis and DNA damage in human lymphocytes measured simultaneously within the cytokinesis-block micronucleus assay: description of the method and results for hydrogen peroxide. Mutagenesis 14, 605–612.CrossRefPubMedGoogle Scholar
  27. 27.
    Kirsch-Volders, M., ed. (1997) The CB in vitro micronucleus assay in human lymphocytes. Special Issue. Mutat. Res. 392 (1, 2).Google Scholar
  28. 28.
    Kirsch-Volders, M., Sofuni, T., Aardema, M., Albertinin, S., Eastmond, D., Fenech, M., Ishidate, M., Lorge, E., Norppa, H., Surrales, J., von der Hude, W., and Wakata, A. (2000) Report from the in vitro micronucleus assay working group. Washington International Workshop on Genotoxicity Test Procedures (March 25–26, 1999).Google Scholar
  29. 29.
    Atencia, R., Garciasanz, M., Perezyarza, G., Asumendi, A., Hilario, E., and Arechaga, J. (1997) A structural analysis of cytoskeletal components during the execution phase of apoptosis. Protoplasma 198, 163–169.CrossRefGoogle Scholar
  30. 30.
    Eastmond, D. A., and Tucker, J. D. (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody. Environ. Mol. Mutagen. 13, 34–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Fenech, M., Rinaldi, J., and Surrales, J. (1994) The origin of micronuclei induced by cytosine arabinoside and its synergistic interaction with hydroxyurea in human lymphocytes. Mutagenesis 9, 273–277.CrossRefPubMedGoogle Scholar
  32. 32.
    Surrales, J., Xamena, N., Creus, A., and Morcos, R. (1995) The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutat. Res. 341, 43–59.Google Scholar
  33. 33.
    Surralles, J., Carbonell, E., Marcos, R., Degrassi, F., Antoccia, A., and Tanzarella, C. (1992) A collaborative study on the improvement of the micronucleus test in cultured human lymphocytes. Mutagenesis 7, 407–410.CrossRefPubMedGoogle Scholar
  34. 34.
    Fenech, M. F., Dunaiski, V., Osborne, Y., and Morley, A. A. (1991) The cytokinesis-block micronucleus assay as a biological dosimeter in spleen and peripheral blood lymphocytes in the mouse following acute whole body irradiation. Mutat. Res. 263, 119–126.CrossRefPubMedGoogle Scholar
  35. 35.
    Heddle, J. A., Bouch, A., Khan, M. A., and Gingerich, J. D. (1990) Concurrent detection of gene mutations and chromosomal aberrations induced in vivo in somatic cells. Mutagenesis 5, 179–184.CrossRefPubMedGoogle Scholar
  36. 36.
    He, S., and Baker, R. S. U. (1989) Initiating carcinogen, triethylenemelamine, induces micronuclei in skin target cells. Environ. Mol. Mutagen. 14, 1–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Wakata, A., and Sasaki, M. S. (1987) Measurement of micronuclei by cytokinesis-block method in cultured Chinese hamster cells : comparison with types and rates of chromosome aberrations. Mutat. Res. 190, 51–57.CrossRefPubMedGoogle Scholar
  38. 38.
    Prosser, J. S., Moquet, J. E., Lloyd, D. C., and Edwards, A. A. (1988) Radiation induction of micronuclei in human lymphocytes. Mutat. Res. 199, 37–45.PubMedGoogle Scholar
  39. 39.
    Lindholm, C., Norrpa, H., Hayashi, M., and Sorsa, M. (1991) Induction of micronuclei and anaphase aberrations by cytochalasin-B in human lymphocyte cultures. Mutat. Res. 260, 369–375.CrossRefPubMedGoogle Scholar
  40. 40.
    Minissi, S., Gustavino, B., Degrassi, F., Tanzarella, C., and Rizzoni, M. (1999) Effect of cytochalasin-B on the induction of chromosome missegregation by colchicine at low concentrations in human lymphocytes. Mutagenesis 14, 43–49.CrossRefPubMedGoogle Scholar
  41. 41.
    Fenech, M. (1997) The advantages and disadvantages of the cytokinesis-block micronucleus method. Mutat. Res. 392, 11–18.PubMedGoogle Scholar
  42. 42.
    Kalweit, S., Utesch, D., von der Hude, W., and Madle, S. (1999) Chemically induced micronucleus formation in V79 cells—comparison of three different test procedures. Mutat. Res. 439, 183–190.PubMedGoogle Scholar
  43. 43.
    Matsushima, T., Hayashi, M., Matsuoka, A., Ishidate, M., Jr., Miura, K. F., Shimizu, H., Suzuki, Y., Morimoto, K., Ogura, H., Mure, K., Koshi, K., and Sofuni, T. (1999) Validation study of the in vitro micronucleus test in a Chinese hamster lung cell line (CHL/IU) Mutagenesis 14, 569–580.CrossRefPubMedGoogle Scholar
  44. 44.
    Fenech, M. (2000) A mathematical model of the in vitro micronucleus assay predicts false negative results if micronuclei are not specifically scored in binucleated cells or in cells that have completed one nuclear division. Mutagenesis 15, 329–336.CrossRefPubMedGoogle Scholar
  45. 45.
    Vig, B. K., and Swearngin, S. E. (1986) Sequence of centromere separation: kinetochore formation in induced laggards and micronuclei. Mutagenesis 1, 464–465.Google Scholar
  46. 46.
    Earnshaw, W. C., and Migeon, B. R. (1985) Three related centromere proteins are absent from the inactive centromere of a stable dicentric chromosome. Chromosoma 92, 290–296.Google Scholar
  47. 47.
    Elhajouji, A., Cunha, M., and Kirsch-Volders, M. (1998) Spindle poisons can induce polyploidy by mitotic slippage and micronucleate mononucleates in the cytokinesis-block assay. Mutagenesis 13, 193–198.CrossRefPubMedGoogle Scholar
  48. 48.
    Moroi, Y., Hartman, A. L., Nakane, P. K., and Tan, E. M. (1981) Distribution of kinetochore antigen in mammalian cell nuclei. J. Cell Biol. 90, 254–259.Google Scholar
  49. 49.
    Fenech, M., and Morley, A. A. (1989) Kinetochore detection in micronuclei: an alternative method for measuring chromosome loss. Mutagenesis 4, 98–104.CrossRefPubMedGoogle Scholar
  50. 50.
    Straus, W. (1982) Imidazole increases the sensitivity of the cytochemical reaction for peroxidase with diaminobenzidine at neutral pH. J. Histochem. Cytochem. 30, 491–493.Google Scholar
  51. 51.
    Scopsi, I., and Larsson, L. I. (1986) Increased sensitivity in peroxidase immunochemistry. A comparative study of a number of peroxidase visualisation methods employing a model system. Histochemistry 84, 221–230.Google Scholar
  52. 52.
    White, N. H., de Matteis, F., Davies, A., Smith, L. L., Crofton-Sleigh, C., Venitt, S., Hewer, A., and Phillips, D. H. (1992) Genotoxic potential of tamoxifen and analogues in female Fischer F344/n rats, DBA/2 and C57BL/6 mice and in human MCL-5 cells. Carcinogenesis 13, 2197–2203.CrossRefPubMedGoogle Scholar
  53. 53.
    Gauthier, J. M., Dubeau, H., Rassart, E., Jarman, W. M., and Wells, R. S. (1999) Biomarkers of DNA damage in marine mammals. Mutat. Res. 444, 427–439.Google Scholar
  54. 54.
    Fenech, M., and Rinaldi, J. (1995) A comparison of lymphocyte micronuclei and plasma micronutrients in vegetarians and non-vegetarians. Carcinogenesis 16, 223–230CrossRefPubMedGoogle Scholar
  55. 55.
    Scott, D., Barber, J. P. B., Levine, E. L., Burrill, W., and Roberts, S. A. (1998) Radiation-induced micronucleus induction in lymphocytes identifies a high frequency of radiosensitive cases among breast cancer patients: a test for predisposition? Br. J. Cancer 77, 614–620.CrossRefPubMedGoogle Scholar
  56. 56.
    Shibamoto, Y., Streffer, C., Fuhrmann, C., and Budach, V. (1991) Tumour radiosensitivity prediction by the cytokinesis-block micronucleus assay. Radiat. Res. 128, 293–300.Google Scholar
  57. 57.
    Fenech, M., Holland, N., Chang, W. P., Zeiger, E., and Bonassi, S. (1999) The HUman MicroNucleus Project- An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat. Res. 428, 271–283.Google Scholar
  58. 58.
    Tates, A. N., van Welie, M. T., and Ploem, J. S. (1990) The present state of the automated micronucleus test for lymphocytes. Int. J. Radiat. Biol. 58, 813–825.Google Scholar
  59. 59.
    Castelain, P., Van Hummelen, P., Deleneer, A., and Kirsch-Volders, M. (1993) Automated detection of cytochalasin-B blocked binucleated lymphocytes for scoring micronuclei. Mutagenesis 8, 285–293.CrossRefPubMedGoogle Scholar
  60. 60.
    Bocker, W., Muller, W. U., and Streffer, C. (1995) Image processing algorithms for the automated micronucleus assay in binucleated human lymphocytes. Cytometry 19, 283–294.CrossRefPubMedGoogle Scholar
  61. 61.
    Frieauff, W., Potterlocher, F., Cordier, A., and Suter, W. (1998) Automatic analysis of the in vitro micronucleus test on V79 cells. Mutat. Res. 413, 57–68.PubMedGoogle Scholar
  62. 62.
    Verhaegen, F., Vral, A., Seuntjens, J., Schipper, N. W., de Ridder L., and Thierens, H. (1994) Scoring of radiation-induced micronuclei in cytokinesis-blocked human lymphocytes by automated image analysis. Cytometry 17, 119–127.Google Scholar
  63. 63.
    Shimizu, N., Itoh, N., Utiyama, H., and Wahl, G. M. (1998) Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J. Cell Biol. 140, 1307–1320.Google Scholar
  64. 64.
    Fenech, M., and Crott, J. W. (2002) Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes—evidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat. Res. 504, 131–136.PubMedGoogle Scholar
  65. 65.
    Fenech, M. (2002) Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov. Today 7, 1128–1137.CrossRefPubMedGoogle Scholar
  66. 66.
    Unger, C., Kress, S., Buchmann, A., and Schwarz, M. (1994) Gamma-irradiation-induced micronuclei from mouse hepatoma cells accumulate high levels of the tumour suppressor protein p53. Cancer Res. 54, 3651–3655.PubMedGoogle Scholar
  67. 67.
    Sablina, A. A., Ilyinskaya, G. V., Rubtsova, S. N., Agapova, L. S., Chumakov, P. M., and Kopnin, B. P. (1998) Activation of p53-mediated cell cycle checkpoint in reponse to micronuclei formation. J. Cell Sci. 111, 977–984.Google Scholar
  68. 68.
    Fenech, M.; Chang, W. P., Kirsch-Volders, M., Holland, N., Bonassi, S., and Zeiger, E. (2003) HUMN Project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. 534, 65–75.PubMedGoogle Scholar
  69. 69.
    Fenech, M., Baghurst, P., Luderer, W., Turner, J., Record, S., Ceppi, M., and Bonassi, S. (2005) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, β-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability – results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26, 991–999.CrossRefPubMedGoogle Scholar
  70. 70.
    Fenech, M. (2005) The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis 20, 255–269.CrossRefPubMedGoogle Scholar
  71. 71.
    Fenech, M., Bonassi, S., Turner, J., Lando, C., Ceppi, M., Chang, W. P., Holland, N., Kirsch-Volders, M., Zeiger, E., Bigatti, M. P., Bolognesi, C., Cao, J., De Luca, G., Di Giorgio, M., Ferguson, L. R., Fucic, A., Garcia Lima, O., Hadjidekova, V. V., Hrelia, P., Jaworska, A., Joksic, G., Krishnaja, A. P., Lee, T.-K., Martelli, A., McKay, M. J., Migliore, L., Mirkova, E., Müller, W.-U., Odagiri, Y., Orsiere, T., Scarfì, M. R., Silva, M. J., Sofuni, T., Suralles, J., Trenta, G., Vorobtsova, I., Vral, A., and Zijno, A. (2003) Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project. Mutat. Res. 534, 45–64.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael Fenech
    • 1
  1. 1.CSIRO Human Nutrition, Adelaide BCAustralia

Personalised recommendations