Gene Function Analysis pp 109-127

Part of the Methods in Molecular Biology™ book series (MIMB, volume 408)

Estimating Protein Function Using Protein-Protein Relationships

  • Shailesh V. Date

Abstract

Many newly identified gene products from completely sequenced genomes are difficult to characterize in the absence of sequence homology to known proteins. In such a scenario, the context of the proteins’ functional associations can be used for annotation; overrepresented functional linkages with a certain class of proteins or members of a pathway allow putative function assignments based on the “guilt-by-association” principle. Two computational functional genomics methods, phylogenetic profiling and identification of Rosetta stone linkages, are described in this chapter, which allow assessment of functional linkages between proteins, consequently facilitating annotation. Phylogenetic profiling involves measuring similarity between profiles that describe the presence or absence of a protein in a set of reference genomes, whereas Rosetta stone fusion sequences help link two or more independently transcribed and translated proteins. Both methods can be applied to investigate functional associations between individual proteins, and can also be extended to reconstruct the genomewide network of functional linkages by querying the entire protein complement of an organism.

Key Words

Interactome protein-protein interactions functional linkages phylogenetic profiles matual information Rosetta stone fusion sequences 

References

  1. 1.
    Gardner, M. J., Hall, N., Funq, E., et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511.CrossRefPubMedGoogle Scholar
  2. 2.
    Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., and Yeates, T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 13, 4285–4288.CrossRefGoogle Scholar
  3. 3.
    Gaasterland, T. and Ragan, M. A. (1998) Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes Microb. Comp. Genomics 3, 199–217.PubMedGoogle Scholar
  4. 4.
    Marcotte, E. M., Pellegrini, M., Ng, H.-L., Rice, D. W., Yeates, T. O., and Eisenberg, D. (1999) Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science 285, 751–753.CrossRefPubMedGoogle Scholar
  5. 5.
    Date, S. V. and Marcotte, E. M. (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat. Biotechnol. 21, 1055–1062.CrossRefPubMedGoogle Scholar
  6. 6.
    Butland, G., Peregrin-Alvarez, J. M., Li, J., et al. (2005) Interaction Network Containing Conserved and Essential Protein Complexes in Escherichia coli. Nature 433, 531–537.CrossRefPubMedGoogle Scholar
  7. 7.
    Peregrin-Alvarez, J. M., Tsoka, S., and Ouzounis, C. A. (2003) The phylogenetic extent of metabolic enzymes and pathways. Genome Res. 13, 422–427.CrossRefPubMedGoogle Scholar
  8. 8.
    Date, S. V. and Stoeckert, C. J. (2006) Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res. 4, 542–549.CrossRefGoogle Scholar
  9. 9.
    Lee, I., Date, S. V., Adai, A. T., and Marcotte, E. M. (2004) A probabilistic functional network of yeast genes. Science 306, 1555–1558.CrossRefPubMedGoogle Scholar
  10. 10.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  11. 11.
    Lopez, R., Silventoinen, V., Robinson, S., Kibria, A., and Gish, W. (2003) WU-Blast2 server at the European Bioinformatics Institute. Nucleic Acids Res. 31, 3795–3798.CrossRefPubMedGoogle Scholar
  12. 12.
    Wu, J., Kasif, S., and DeLisi, C. (2003). Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19, 1524–1530.CrossRefPubMedGoogle Scholar
  13. 13.
    Shannon, C. E. (1948) A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423; 623–656.Google Scholar
  14. 14.
    Krober, B. T. M., Farber, R. M., Wolpert, D. H., and Lapedes, A. S. (1993) Covariation of mutations in the V3 loop of human immunodeficiency virus type I envelope protein: an information theoretic analysis. Proc. Nat. Acad. Sci. USA 90, 7176–7180.CrossRefGoogle Scholar
  15. 15.
    Huynen, M., Snel, B., Lathe, W., and Bork, P. (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10, 1204–1210.CrossRefPubMedGoogle Scholar
  16. 16.
    Verjovsky Marcotte, C. J. and Marcotte, E. M. (2002) Predicting functional linkages from gene fusions with confidence. Appl. Bioinforma. 1, 1–8.Google Scholar
  17. 17.
    Kanehisa, M., Goto, S., Hattori, M., et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357.CrossRefPubMedGoogle Scholar
  18. 18.
    Jansen, R., Yu, H., Greenbaum, D., et al. (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453.CrossRefPubMedGoogle Scholar
  19. 19.
    Adai, A. T., Date, S. V., Wieland, S., and Marcotte, E. M. (2004) LGL: Creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol. 340, 179–190.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Shailesh V. Date
    • 1
  1. 1.University of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations