Advertisement

Construction of Simple and Efficient DNA Vector-Based Short Hairpin RNA Expression Systems for Specific Gene Silencing in Mammalian Cells

  • Tsung-Lin Cheng
  • Wen-Tsan Chang
Part of the Methods in Molecular Biology™ book series (MIMB, volume 408)

Abstract

RNA interference (RNAi) is an evolutionarily conserved mechanism of posttranscriptional gene silencing induced by introducing the double-stranded RNAs (dsRNAs) into cells. Recent progress in RNAi-based gene-silencing techniques has revolutionarily advanced in studies of the functional genomics and molecular therapeutics. Among the widely used dsRNAs including exogenously synthetic and endogenously expressed small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), the shRNAs are more efficient than siRNAs on the induction of gene silencing and currently have evolved as an extremely powerful and the most popular gene silencing reagent. The DNA vector-based shRNA-expression systems provide not only a simple and effective way in inhibiting gene activities in either inheritable or inducible manner, but also a cost-effective tool in constructing the expression vectors. To fully explore the DNA vector-based shRNA-expression systems in RNAi-mediated gene-silencing techniques, four distinct RNA polymerase III (Pol III)- controlled type III promoter-based expression vectors are constructed including pHsH1, pHsU6, pMmH1, and pMmU6, which contain either the RNase P RNA H1 (H1) or small nuclear RNA U6 (U6) promoter from human and mouse. Moreover, to improve the constructing and screening efficiency for the shRNA-expression recombinant clones, these four DNA vectors are further reconstructed by inserting a stuffer of puromycin resistance gene (Puro R) between restriction enzyme ClaI and HindIII sites, which makes the preparation of vectors easy and simple for cloning the shRNA-expression sequences. Because of the ease, speed, and cost efficiency, these four improved DNA vector-based shRNA-expression vectors provide a simple, convenient, and efficient genesilencing system for analyzing specific gene functions in mammalian cells. Herein, the simple and practical procedures for the construction of DNA vector-based expression vectors, potential and rational design rules for the selection of effective RNAi-targeting sequences, efficient and costeffective cloning strategies for the construction of shRNA-expression cassettes, and effective and functional activity assays for the evaluation of expressed shRNAs are described.

Key Words

DNA vector-based RNAi system gene silencing RNA interference (RNAi) RNA polymerase III (Pol III) promoter RNase P RNA H1 promoter (H1) small nuclear RNA U6 promoter (U6) short hairpin RNA (shRNA) small interfering RNA (siRNA) 

References

  1. 1.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.CrossRefPubMedGoogle Scholar
  2. 2.
    Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by doublestranded RNA. Nature 431, 343–349.CrossRefPubMedGoogle Scholar
  3. 3.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.CrossRefPubMedGoogle Scholar
  4. 4.
    Carmell, M. A. and Hannon, G. J. (2004) RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218.CrossRefPubMedGoogle Scholar
  5. 5.
    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.CrossRefPubMedGoogle Scholar
  6. 6.
    Schwarz, D. S., Hutvagner, G., Haley, B., and Zamore, P. D. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548.CrossRefPubMedGoogle Scholar
  7. 7.
    Schramke, V. and Allshire, R. (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074.CrossRefPubMedGoogle Scholar
  8. 8.
    Soifer, H. S., Zaragoza, A., Peyvan, M., Behlke, M. A., and Rossi, J. J. (2005) A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846–856.CrossRefPubMedGoogle Scholar
  9. 9.
    Reinhart, B. J., Slack, F. J., Basson, M., et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.CrossRefPubMedGoogle Scholar
  10. 10.
    Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.CrossRefPubMedGoogle Scholar
  11. 11.
    Matzke, M. A. and Birchler, J. A. (2005) RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Shuey, D. J., McCallus, D. E., and Giordano, T. (2002) RNAi: gene-silencing in therapeutic intervention. Drug Discov. Today 7, 1040–1046.CrossRefPubMedGoogle Scholar
  13. 13.
    Dorsett, Y. and Tuschl, T. (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329.CrossRefPubMedGoogle Scholar
  14. 14.
    Berns, K., Hijmans, E. M., Mullenders, J., et al. (2004) A large-scale screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437.CrossRefPubMedGoogle Scholar
  15. 15.
    Paddison, P. J., Silva, J. M. L., Conklin, D. S., et al. (2004) A resource for largescale RNA-interference-based screens in mammals. Nature 428, 427–431.CrossRefPubMedGoogle Scholar
  16. 16.
    Player, M. R. and Torrence, P. F. (1998) The 2-5 A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol. Ther. 78, 55–113.CrossRefPubMedGoogle Scholar
  17. 17.
    Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.CrossRefPubMedGoogle Scholar
  18. 18.
    Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.CrossRefPubMedGoogle Scholar
  19. 19.
    Geiss, G., Jin, G., Guo, J., Bumgarner, R., Katze, M. G., and Sen, G. C. (2001) A comprehensive view of regulation of gene expression by double-stranded RNAmediated cell signaling. J. Biol. Chem. 276, 30,178–30,182.PubMedGoogle Scholar
  20. 20.
    Samuel, C. E. (2001) Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809.CrossRefPubMedGoogle Scholar
  21. 21.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.CrossRefPubMedGoogle Scholar
  22. 22.
    Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213.CrossRefPubMedGoogle Scholar
  23. 23.
    Siolas, D., Lerner, C., Burchard, J., et al. (2005) Synthetic shRNA as potent RNAi triggers. Nat. Biotechnol. 23, 227–231.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee, N. S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.PubMedGoogle Scholar
  25. 25.
    Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.CrossRefPubMedGoogle Scholar
  26. 26.
    Zheng, L., Liu, J., Batalov, S., et al. (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 135–140.CrossRefPubMedGoogle Scholar
  27. 27.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.CrossRefPubMedGoogle Scholar
  28. 28.
    Sui, G., Soohoo, C., Affar, E. B., et al. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.CrossRefPubMedGoogle Scholar
  29. 29.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.CrossRefPubMedGoogle Scholar
  30. 30.
    Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.CrossRefPubMedGoogle Scholar
  31. 31.
    Scherer, L. J. and Rossi, J. J. (2003) Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 21, 1457–1465.CrossRefPubMedGoogle Scholar
  32. 32.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.CrossRefPubMedGoogle Scholar
  33. 33.
    Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932.CrossRefPubMedGoogle Scholar
  34. 34.
    Baer, M., Nilsen, T. W., Costigan, C., and Altman, S. (1990) Structure and transcription of a human gene for HI RNA, the RNA component of human RNase P. Nucleic Acids Res. 18, 97–103.CrossRefPubMedGoogle Scholar
  35. 35.
    Paule, M. R. and White, R. J. (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298.CrossRefPubMedGoogle Scholar
  36. 36.
    Myslinski, E., Ame, J. C., Krol, A., and Carbon, P. (2001) An unusually compact external promoter for RNA polymerase III transcription of the human HI RNA gene. Nucleic Acids Res. 29, 2502–2509.CrossRefPubMedGoogle Scholar
  37. 37.
    Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.CrossRefPubMedGoogle Scholar
  38. 38.
    Wu, M.-T., Wu, R.-H., Hung, C.-F., Cheng, T.-L., Tsai, W.-H., and Chang, W.-T. (2005) Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem. Biophys. Res. Commun. 330, 53–59.CrossRefPubMedGoogle Scholar
  39. 39.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.CrossRefPubMedGoogle Scholar
  40. 40.
    Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.CrossRefPubMedGoogle Scholar
  41. 41.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.CrossRefPubMedGoogle Scholar
  42. 42.
    Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.CrossRefPubMedGoogle Scholar
  43. 43.
    Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.CrossRefPubMedGoogle Scholar
  44. 44.
    Hung, C.-F., Cheng, T.-L., Wu, R.-H., Teng, C.-F., and Chang, W.-T. (2006) A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells. Biochem. Biophys. Res. Commun. 339, 1035–1042.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Tsung-Lin Cheng
    • 1
  • Wen-Tsan Chang
    • 1
  1. 1.National Cheng Kung University Medical CollegeTainanTaiwan

Personalised recommendations