Functional Profiling Methods in Cancer

  • Joaquín Dopazo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 576)

Summary

The introduction of new high-throughput methodologies such as DNA microarrays constitutes a major breakthrough in cancer research. The unprecedented amount of data produced by such technologies has opened new avenues for interrogating living systems although, at the same time, it has demanded of the development of new data analytical methods as well as new strategies for testing hypotheses. A history of early successful applications in cancer boosted the use of microarrays and fostered further applications in other fields.

Keeping the pace with these technologies, bioinformatics offers new solutions for data analysis and, what is more important, permits the formulation of a new class of hypotheses inspired in systems biology, more oriented to pathways or, in general, to modules of functionally related genes. Although these analytical methodologies are new, some options are already available and are discussed in this chapter.

Key words

Functional profiling Functional enrichment Gene-set analysis Pathway Gene ontology Systems biology Microarray 

Notes

Acknowledgments

This work is supported by grants from the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, projects BIO 2008-04212 from the Spanish Ministry of Education and Science and National Institute of Bioinformatics (http://www.inab.org), a platform of Genoma España. EA is supported by a fellowship for the FIS of the Spanish Ministry of Health (FI06/00027).

References

  1. 1.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531–537.CrossRefPubMedGoogle Scholar
  2. 2.
    Allison, D.B., Cui, X., Page, G.P. and Sabripour, M. (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet, 7, 55–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C., et al. (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA, 96, 9212–9217.CrossRefPubMedGoogle Scholar
  4. 4.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511.CrossRefPubMedGoogle Scholar
  5. 5.
    Simon, R., Radmacher, M.D., Dobbin, K. and McShane, L.M. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst, 95, 14–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Ge, H., Walhout, A.J. and Vidal, M. (2003) Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet, 19, 551–560.CrossRefPubMedGoogle Scholar
  7. 7.
    Benjamini, Y. and Yekutieli, D. (2001) The control of false discovery rate in multiple testing under dependency. Ann Stat, 29, 1165–1188.CrossRefGoogle Scholar
  8. 8.
    Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA, 100, 9440–9445.CrossRefPubMedGoogle Scholar
  9. 9.
    van ‘t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.CrossRefPubMedGoogle Scholar
  10. 10.
    Moreau, Y., Aerts, S., De Moor, B., De Strooper, B. and Dabrowski, M. (2003) Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet, 19, 570–577.CrossRefPubMedGoogle Scholar
  11. 11.
    Al-Shahrour, F. and Dopazo, J. (2005) In Azuaje, F. and Dopazo, J. (eds.), Data analysis and visualization in genomics and proteomics. Wiley, pp. 99–112.CrossRefGoogle Scholar
  12. 12.
    Al-Shahrour, F., Minguez, P., Vaquerizas, J.M., Conde, L. and Dopazo, J. (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res, 33, W460–W464.CrossRefPubMedGoogle Scholar
  13. 13.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25, 25–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res, 32, D277–D280.CrossRefPubMedGoogle Scholar
  15. 15.
    Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M., Narasimhan, S., Kane, D.W., Reinhold, W.C., Lababidi, S., et al. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 4, R28.CrossRefPubMedGoogle Scholar
  16. 16.
    Al-Shahrour, F., Diaz-Uriarte, R. and Dopazo, J. (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20, 578–580.CrossRefPubMedGoogle Scholar
  17. 17.
    Khatri, P. and Draghici, S. (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics, 21, 3587–3595.CrossRefPubMedGoogle Scholar
  18. 18.
    Bammler, T., Beyer, R.P., Bhattacharya, S., Boorman, G.A., Boyles, A., Bradford, B.U., Bumgarner, R.E., Bushel, P.R., Chaturvedi, K., Choi, D., et al. (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods, 2, 351–356.CrossRefPubMedGoogle Scholar
  19. 19.
    Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34, 267–273.CrossRefPubMedGoogle Scholar
  20. 20.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102, 15545–15550.CrossRefPubMedGoogle Scholar
  21. 21.
    Goeman, J.J., Oosting, J., Cleton-Jansen, A.M., Anninga, J.K. and van Houwelingen, H.C. (2005) Testing association of a pathway with survival using gene expression data. Bioinformatics, 21, 1950–1957.CrossRefPubMedGoogle Scholar
  22. 22.
    Goeman, J.J., van de Geer, S.A., de Kort, F. and van Houwelingen, H.C. (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics, 20, 93–99.CrossRefPubMedGoogle Scholar
  23. 23.
    Tian, L., Greenberg, S.A., Kong, S.W., Altschuler, J., Kohane, I.S. and Park, P.J. (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA, 102, 13544–13549.CrossRefPubMedGoogle Scholar
  24. 24.
    Smid, M. and Dorssers, L.C. (2004) GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms. Bioinformatics, 20, 2618–2625.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, S.Y. and Volsky, D.J. (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics, 6, 144.Google Scholar
  26. 26.
    Chen, Z., Wang, W., Ling, X.B., Liu, J.J. and Chen, L. (2006) GO-Diff: mining functional differentiation between EST-based transcriptomes. BMC Bioinformatics, 7, 72.Google Scholar
  27. 27.
    Al-Shahrour, F., Minguez, P., Tarraga, J., Montaner, D., Alloza, E., Vaquerizas, J.M., Conde, L., Blaschke, C., Vera, J. and Dopazo, J. (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res, 34, W472–W476.CrossRefPubMedGoogle Scholar
  28. 28.
    Khalil, I.G. and Hill, C. (2005) Systems biology for cancer. Curr Opin Oncol, 17, 44–48.CrossRefPubMedGoogle Scholar
  29. 29.
    Kitano, H. (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer, 4, 227–235.CrossRefPubMedGoogle Scholar
  30. 30.
    Butcher, E.C. (2005) Can cell systems biology rescue drug discovery? Nat Rev Drug Discov, 4, 461–467.CrossRefPubMedGoogle Scholar
  31. 31.
    Searls, D.B. (2005) Data integration: challenges for drug discovery. Nat Rev Drug Discov, 4, 45–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Khatri, P., Sellamuthu, S., Malhotra, P., Amin, K., Done, A. and Draghici, S. (2005) Recent additions and improvements to the Onto-Tools. Nucleic Acids Res, 33, W762–W765.CrossRefPubMedGoogle Scholar
  33. 33.
    Al-Shahrour, F., Arbiza, L., Dopazo, H., Huerta-Cepas, J., Minguez, P., Montaner, D. and Dopazo, J. (2007) From genes to functional classes in the study of biological systems. BMC Bioinformatics, 8, 114.Google Scholar
  34. 34.
    Al-Shahrour, F., Minguez, P., Tarraga, J., Montaner, D., Alloza, E., Vaquerizas, J.M., Conde, L., Blaschke, C., Vera, J. and Dopazo, J. (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res, 34, W472–W476.CrossRefPubMedGoogle Scholar
  35. 35.
    Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., et al. (2005) InterPro, progress and status in 2005. Nucleic Acids Res, 33, D201–D205.CrossRefPubMedGoogle Scholar
  36. 36.
    Robertson, G., Bilenky, M., Lin, K., He, A., Yuen, W., Dagpinar, M., Varhol, R., Teague, K., Griffith, O.L., Zhang, X., et al. (2006) cisRED: a database system for genome-scale computational discovery of regulatory elements. Nucleic Acids Res, 34, D68–D73.CrossRefPubMedGoogle Scholar
  37. 37.
    Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruss, M., Reuter, I. and Schacherer, F. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res, 28, 316–319.CrossRefPubMedGoogle Scholar
  38. 38.
    Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. and Enright, A.J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34, D140–D144.CrossRefPubMedGoogle Scholar
  39. 39.
    Minguez, P., Al-Shahrour, F., Montaner, D. and Dopazo, J. (2007) Functional profiling of microarray experiments using text-mining derived bioentities. Bioinformatics, 23, 3098–3099.CrossRefPubMedGoogle Scholar
  40. 40.
    Conde, L., Montaner, D., Burguet-Castell, J., Tarraga, J., Al-Shahrour, F. and Dopazo, J. (2007) Functional profiling and gene expression analysis of chromosomal copy number alterations. Bioinformation, 1, 432–435.PubMedGoogle Scholar
  41. 41.
    Conde, L., Montaner, D., Burguet-Castell, J., Tarraga, J., Medina, I., Al-Shahrour, F. and Dopazo, J. (2007) ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Res, 35, W81–W85.CrossRefPubMedGoogle Scholar
  42. 42.
    Hosack, D.A., Dennis, G., Jr., Sherman, B.T., Lane, H.C. and Lempicki, R.A. (2003) Identifying biological themes within lists of genes with EASE. Genome Biol, 4, R70.CrossRefPubMedGoogle Scholar
  43. 43.
    Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C. and Lempicki, R.A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 4, P3.CrossRefPubMedGoogle Scholar
  44. 44.
    Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C. and Conklin, B.R. (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol, 4, R7.CrossRefPubMedGoogle Scholar
  45. 45.
    Beissbarth, T. and Speed, T.P. (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 20, 1464–1465.CrossRefPubMedGoogle Scholar
  46. 46.
    Khatri, P., Bhavsar, P., Bawa, G. and Draghici, S. (2004) Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res, 32, W449–W456.CrossRefPubMedGoogle Scholar
  47. 47.
    Rivals, I., Personnaz, L., Taing, L. and Potier, M.C. (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics, 23, 401–407.CrossRefPubMedGoogle Scholar
  48. 48.
    Cui, X. and Churchill, G.A. (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol, 4, 210.CrossRefPubMedGoogle Scholar
  49. 49.
    Barry, W.T., Nobel, A.B. and Wright, F.A. (2005) Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics, 21, 1943–1949.CrossRefPubMedGoogle Scholar
  50. 50.
    Al-Shahrour, F., Diaz-Uriarte, R. and Dopazo, J. (2005) Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 21, 2988–2993.CrossRefPubMedGoogle Scholar
  51. 51.
    Albertson, D.G. and Pinkel, D. (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet, 12(Spec No 2), R145–R152.CrossRefPubMedGoogle Scholar
  52. 52.
    Pinkel, D. and Albertson, D.G. (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet, 37(Suppl), S11–S17.CrossRefPubMedGoogle Scholar
  53. 53.
    Franke, L., van Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M. and Wijmenga, C. (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet, 78, 1011–1025.CrossRefPubMedGoogle Scholar
  54. 54.
    Kitano, H. (2002) Computational systems biology. Nature, 420, 206–210.CrossRefPubMedGoogle Scholar
  55. 55.
    Zeeberg, B.R., Qin, H., Narasimhan, S., Sunshine, M., Cao, H., Kane, D.W., Reimers, M., Stephens, R.M., Bryant, D., Burt, S.K., et al. (2005) High-throughput GoMiner, an ‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics, 6, 168.CrossRefPubMedGoogle Scholar
  56. 56.
    Al-Shahrour, F., Minguez, P., Tarraga, J., Medina, I., Alloza, E., Montaner, D. and Dopazo, J. (2007) FatiGO+: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res, 35, W91–W96.CrossRefPubMedGoogle Scholar
  57. 57.
    Draghici, S., Khatri, P., Bhavsar, P., Shah, A., Krawetz, S.A. and Tainsky, M.A. (2003) Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res, 31, 3775–3781.CrossRefPubMedGoogle Scholar
  58. 58.
    Khatri, P., Desai, V., Tarca, A.L., Sellamuthu, S., Wildman, D.E., Romero, R. and Draghici, S. (2006) New Onto-Tools: Promoter-Express, nsSNPCounter and Onto-Translate. Nucleic Acids Res, 34, W626–W631.CrossRefPubMedGoogle Scholar
  59. 59.
    Khatri, P., Voichita, C., Kattan, K., Ansari, N., Khatri, A., Georgescu, C., Tarca, A.L. and Draghici, S. (2007) Onto-Tools: new additions and improvements in 2006. Nucleic Acids Res, 35, W206–W211.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang, B., Schmoyer, D., Kirov, S. and Snoddy, J. (2004) GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics, 5, 16.CrossRefPubMedGoogle Scholar
  61. 61.
    Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M. and Sherlock, G. (2004) GO::TermFinder – open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 20, 3710–3715.CrossRefPubMedGoogle Scholar
  62. 62.
    Robinson, M.D., Grigull, J., Mohammad, N. and Hughes, T.R. (2002) FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics, 3, 35.Google Scholar
  63. 63.
    Castillo-Davis, C.I. and Hartl, D.L. (2003) GeneMerge – post-genomic analysis, data mining, and hypothesis testing. Bioinformatics, 19, 891–892.CrossRefPubMedGoogle Scholar
  64. 64.
    Berriz, G.F., King, O.D., Bryant, B., Sander, C. and Roth, F.P. (2003) Characterizing gene sets with FuncAssociate. Bioinformatics, 19, 2502–2504.CrossRefPubMedGoogle Scholar
  65. 65.
    Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448–3449.CrossRefPubMedGoogle Scholar
  66. 66.
    Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D. and Jacq, B. (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol, 5, R101.CrossRefPubMedGoogle Scholar
  67. 67.
    Masseroli, M., Galati, O. and Pinciroli, F. (2005) GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res, 33, W717–W723.CrossRefPubMedGoogle Scholar
  68. 68.
    Masseroli, M., Martucci, D. and Pinciroli, F. (2004) GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res, 32, W293–W300.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang, B., Kirov, S. and Snoddy, J. (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res, 33, W741–W748.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhong, S., Storch, K.F., Lipan, O., Kao, M.C., Weitz, C.J. and Wong, W.H. (2004) GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in Gene Ontology space. Appl Bioinformatics, 3, 261–264.CrossRefPubMedGoogle Scholar
  71. 71.
    Shah, N.H. and Fedoroff, N.V. (2004) CLENCH: a program for calculating Cluster ENriCHment using the Gene Ontology. Bioinformatics, 20, 1196–1197.CrossRefPubMedGoogle Scholar
  72. 72.
    Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-Cabo, F. and Trajanoski, Z. (2005) PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Res, 33, W633–W637.CrossRefPubMedGoogle Scholar
  73. 73.
    Young, A., Whitehouse, N., Cho, J. and Shaw, C. (2005) OntologyTraverser: an R package for GO analysis. Bioinformatics, 21, 275–276.CrossRefPubMedGoogle Scholar
  74. 74.
    Pasquier, C., Girardot, F., Jevardat de Fombelle, K. and Christen, R. (2004) THEA: ontology-driven analysis of microarray data. Bioinformatics, 20, 2636–2643.CrossRefPubMedGoogle Scholar
  75. 75.
    Vencio, R.Z., Koide, T., Gomes, S.L. and Pereira, C.A. (2006) BayGO: Bayesian analysis of ontology term enrichment in microarray data. BMC Bioinformatics, 7, 86.CrossRefPubMedGoogle Scholar
  76. 76.
    Falcon, S. and Gentleman, R. (2007) Using GOstats to test gene lists for GO term association. Bioinformatics, 23, 257–258.CrossRefPubMedGoogle Scholar
  77. 77.
    Lee, H.K., Braynen, W., Keshav, K. and Pavlidis, P. (2005) ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics, 6, 269.Google Scholar
  78. 78.
    Volinia, S., Evangelisti, R., Francioso, F., Arcelli, D., Carella, M. and Gasparini, P. (2004) GOAL: automated Gene Ontology analysis of expression profiles. Nucleic Acids Res, 32, W492–W499.CrossRefPubMedGoogle Scholar
  79. 79.
    Breslin, T., Eden, P. and Krogh, M. (2004) Comparing functional annotation analyses with Catmap. BMC Bioinformatics, 5, 193.CrossRefPubMedGoogle Scholar
  80. 80.
    Tomfohr, J., Lu, J. and Kepler, T.B. (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6, 225.CrossRefPubMedGoogle Scholar
  81. 81.
    Ben-Shaul, Y., Bergman, H. and Soreq, H. (2005) Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression. Bioinformatics, 21, 1129–1137.CrossRefPubMedGoogle Scholar
  82. 82.
    Boorsma, A., Foat, B.C., Vis, D., Klis, F. and Bussemaker, H.J. (2005) T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res, 33, W592–W595.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joaquín Dopazo
    • 1
  1. 1.Bioinformatics DepartmentCentro de Investigación Príncipe FelipeValencioSpain

Personalised recommendations